Cho khai triển P(x) = $(x+ \frac{1}{2})(x+ \frac{1}{2^2}) ((x+ \frac{1}{2^3})...(x+ \frac{1}{2^n})$ . Xác định hệ số của $ x^{n-1}, x^{n-2}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải tích luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Tổ hợp - Xác suất giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Nhị thức Newton

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 26-01-2014, 16:03
Avatar của OoMưaOo
OoMưaOo OoMưaOo đang ẩn
Thành viên Chính thức
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 150
Điểm: 22 / 1790
Kinh nghiệm: 2%

Thành viên thứ: 17323
 
Tham gia ngày: Nov 2013
Bài gửi: 66
Đã cảm ơn : 202
Được cảm ơn 19 lần trong 10 bài viết

Lượt xem bài này: 484
Mặc định Cho khai triển P(x) = $(x+ \frac{1}{2})(x+ \frac{1}{2^2}) ((x+ \frac{1}{2^3})...(x+ \frac{1}{2^n})$ . Xác định hệ số của $ x^{n-1}, x^{n-2}$





Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 31-01-2014, 22:29
Avatar của LaMort
LaMort LaMort đang ẩn
Cộng Tác Viên
 
Cấp bậc: 8 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 189
Điểm: 30 / 2200
Kinh nghiệm: 57%

Thành viên thứ: 18146
 
Tham gia ngày: Dec 2013
Bài gửi: 92
Đã cảm ơn : 0
Được cảm ơn 214 lần trong 64 bài viết

Mặc định Re: Cho khai triển P(x) = $(x+ \frac{1}{2})(x+ \frac{1}{2^2}) ((x+ \frac{1}{2^3})...(x+ \frac{1}{2^n})$ . Xác định hệ số của $ x^{n-1}, x^{n-2}$

Nguyên văn bởi GấuMT Xem bài viết
Cho khai triển P(x) = $(x+ \frac{1}{2})(x+ \frac{1}{2^2}) ((x+ \frac{1}{2^3})...(x+ \frac{1}{2^n})$ . Xác định hệ số của $ x^{n-1}, x^{n-2}$
Bài này thì cứ dùng quy tắc nhân đa thức như bình thường thôi, chứ có gì đâu mà phải thảo luận?


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014