Cho $x,y,z$ thỏa mãn $x+y+z=0$ và $x^2+y^2+z^2=1$. Chứng minh rằng: $x^3+y^3+z^3=<\frac{1}{\sqrt{6}}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 04-01-2014, 16:00
Avatar của maixuanhang
maixuanhang maixuanhang đang ẩn
Thành viên Danh dự
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 321
Điểm: 73 / 4598
Kinh nghiệm: 85%

Thành viên thứ: 3249
 
Tham gia ngày: Jan 2013
Bài gửi: 220
Đã cảm ơn : 132
Được cảm ơn 60 lần trong 42 bài viết

Lượt xem bài này: 645
Mặc định Cho $x,y,z$ thỏa mãn $x+y+z=0$ và $x^2+y^2+z^2=1$. Chứng minh rằng: $x^3+y^3+z^3=<\frac{1}{\sqrt{6}}$



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 04-01-2014, 16:30
Avatar của Nguyễn Thế Duy
Nguyễn Thế Duy Nguyễn Thế Duy đang ẩn
Cộng Tác Viên
Đến từ: Hải Hậu
Nghề nghiệp: Học sinh nghèo !!
Sở thích: Toán học
 
Cấp bậc: 29 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 70 / 706
Điểm: 370 / 8321
Kinh nghiệm: 25%

Thành viên thứ: 17501
 
Tham gia ngày: Nov 2013
Bài gửi: 1.111
Đã cảm ơn : 227
Được cảm ơn 2.023 lần trong 753 bài viết

Mặc định Re: Cho $x,y,z$ thỏa mãn $x+y+z=0$ và $x^2+y^2+z^2=1$. Chứng minh rằng: $x^3+y^3+z^3=<\frac{1}{\sqrt{6}}$

Từ giả thiết : $x + y + z = 0 ; x^{2} + y^{2} + z^{2} = 1 $ , ta có :

$0 = \left(x + y + z \right)^{2} = 1 + 2xy + 2yz + 2xz = 1 + 2x\left(y + z \right) + 2yz = 1 - 2x^{2} + 2yz $

$\Rightarrow yz = \frac{2x^{2} - 1}{2} \leq \frac{y^{2} + z^{2}}{2} \Rightarrow \frac{2x^{2} - 1}{2} \leq \frac{1 - x^{2}}{2} \Leftrightarrow \frac{ - \sqrt{6}}{3} \leq x \leq \frac{\sqrt{6}}{3}$

Ta có : $P = x^{3} + y^{3} + z^{3} = x^{3} + \left(y + z \right)\left(y^{2} + z^{2} - yz\right)$

$\Rightarrow P = x^{3} + \left( - x \right)\left( 1 - x^{2} - \frac{2x^{2} - 1}{2}\right) = 3x^{3} - \frac{3x}{2}$

Đến đây xét hàm $f\left(x \right) = 3x^{3} - \frac{3x}{2} $ với $\frac{ - \sqrt{6}}{3} \leq x \leq \frac{\sqrt{6}}{3}$


Gỉa sử $z$ là số bé nhất , khi đó $z^{2} \leq xz $ ; $yz$ và $x + y \leq 3$ nên ta có điều sau :

$\begin{align*}
P &\leq \left(x^2 - xy + y^2 \right)x^2y^2 \\
&= \left(\left(x + y \right)^2 - 3xy \right)x^2y^2 \\
&\leq \left(9 - 3xy \right)x^2y^2 \\
&= 12 - 3\left(xy - 2 \right)^2\left(1 + xy \right) \\
&\leq 12
\end{align*}$

Do đó kết luận GTLN của $P$ bằng $12$ khi và chỉ khi $x = 2$ ; $y = 1$ ; $ z = 0$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Nguyễn Thế Duy 
Lê Nhi (09-01-2014)
  #3  
Cũ 04-01-2014, 16:42
Avatar của maixuanhang
maixuanhang maixuanhang đang ẩn
Thành viên Danh dự
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 321
Điểm: 73 / 4598
Kinh nghiệm: 85%

Thành viên thứ: 3249
 
Tham gia ngày: Jan 2013
Bài gửi: 220
Đã cảm ơn : 132
Được cảm ơn 60 lần trong 42 bài viết

Mặc định Re: Cho $x,y,z$ thỏa mãn $x+y+z=0$ và $x^2+y^2+z^2=1$. Chứng minh rằng: $x^3+y^3+z^3=<\frac{1}{\sqrt{6}}$

Em học lớp 10 nên chưa học đạo hàm , xét hàm. Thầy cô còn cách nào không ạ


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 09-01-2014, 21:04
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 13458
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.188 lần trong 1.383 bài viết

Mặc định Re: Cho $x,y,z$ thỏa mãn $x+y+z=0$ và $x^2+y^2+z^2=1$. Chứng minh rằng: $x^3+y^3+z^3=<\frac{1}{\sqrt{6}}$

Nguyên văn bởi maixuanhang Xem bài viết
Cho $x,y,z$ thỏa mãn $x+y+z=0$ và $x^2+y^2+z^2=1$. Chứng minh rằng:
$x^3+y^3+z^3=<\frac{1}{\sqrt{6}}$
Chú ý: Với $x+y+z=0$ thì $x^3+y^3+z^3=3xyz$.
Ta có $1=x^2+y^2+z^2=x^2+y^2+(-x-y)^2=2(x^2+y^2+xy)\ge 6xy\Rightarrow xy\le \dfrac{1}{6}$.
Mặt khác, $|xyz|=\sqrt{x^2y^2z^2}=\sqrt{x^2y^2(x^2+2xy+y^2)} =\sqrt{x^2y^2\left(\frac{1}{2}+xy\right)}=\sqrt{ \dfrac{1}{54}-\left(xy+\frac{1}{3}\right)^2\left(\frac{1}{6}-xy\right)}\le \sqrt{\dfrac{1}{54}}$.
Do đó $x^3+y^3+z^3=3xyz\le 3\sqrt{\dfrac{1}{54}}= \sqrt{\dfrac{1}{6}}$.


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Lê Đình Mẫn 
neymar11 (08-08-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực $a,b,c$. Chứng minh rằng: $\sum \frac{a^{2}+b^{2}}{(a-b)^{2}}\geq \frac{5}{2}$ pcfamily Đại số lớp 8 4 20-06-2016 22:22
Chứng minh rằng $x^2+y^2+\frac{3}{5}xy>1$ jupiterhn9x Bất đẳng thức - Cực trị 1 22-05-2016 13:41
Chứng minh rằng $\forall a\geq 1$ ta luôn có $\frac{1}{a^{x}}+\frac{1}{a^{y}}+\frac{1}{a^{z}}\g eq \frac{x}{a^{x}}+\frac{y}{a^{y}}+\frac{z}{a^{z}}$ youngahkim Bất đẳng thức - Cực trị 1 20-05-2016 13:44
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41
Chứng minh rằng: $\sqrt{a+\frac{(b-c)^{2}}{4}}+\sqrt{b+\frac{(c-a)^{2}}{4}}+\sqrt{c+\frac{(a-b)^{2}}{4}}\leq 2$ Dsfaster134 Bất đẳng thức - Cực trị 4 23-02-2015 18:40



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
cho x y z=0. chứng minh x^3 y^3 z^3- 3xyz=0
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014