Giải hệ phương trình: $\left\{\begin{matrix} x^{4}+y^{4}+x^{2}-y^{2}=2x^{2}y^{2} & \\ (2x+3)y+2y^{2}+x+1=0 & \end{matrix}\right.$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải hệ phương trình

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 19-12-2013, 16:07
Avatar của Tống Văn Nghĩa
Tống Văn Nghĩa Tống Văn Nghĩa đang ẩn
Quản Lý Diễn Đàn
Đến từ: THPT
Nghề nghiệp: ABC
Sở thích: Tự do
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 548
Điểm: 210 / 7933
Kinh nghiệm: 95%

Thành viên thứ: 2652
 
Tham gia ngày: Jan 2013
Bài gửi: 631
Đã cảm ơn : 329
Được cảm ơn 485 lần trong 271 bài viết

Lượt xem bài này: 487
Mặc định Giải hệ phương trình: $\left\{\begin{matrix} x^{4}+y^{4}+x^{2}-y^{2}=2x^{2}y^{2} & \\ (2x+3)y+2y^{2}+x+1=0 & \end{matrix}\right.$

Giải hệ phương trình: $\left\{\begin{matrix}
x^{4}+y^{4}+x^{2}-y^{2}=2x^{2}y^{2} & \\
(2x+3)y+2y^{2}+x+1=0 &
\end{matrix}\right.$


Chủ đề được quan tâm nhiều nhất:



Còn sống là còn nỗ lực


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 19-12-2013, 16:20
Avatar của tien.vuviet
tien.vuviet tien.vuviet đang ẩn
Quản Lý Diễn Đàn
Nghề nghiệp: Ăn mày
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 545
Điểm: 207 / 8069
Kinh nghiệm: 82%

Thành viên thứ: 1375
 
Tham gia ngày: Nov 2012
Bài gửi: 623
Đã cảm ơn : 88
Được cảm ơn 622 lần trong 330 bài viết

Mặc định Re: Giải hệ phương trình: $\left\{\begin{matrix} x^{4}+y^{4}+x^{2}-y^{2}=2x^{2}y^{2} & \\ (2x+3)y+2y^{2}+x+1=0 & \end{matrix}\right.$

Pt (1) tính $\Delta$ theo $y$

$y^4 -(1+2x^2)y^2 +x^4 +x^2=0$

$\Delta = (1+2x^2)^2 -4x^4 -4x^2=1$

Tóm lại $y^4 -(1+2x^2)y^2 +x^4 +x^2=0$

$\Leftrightarrow (y^2-x^2)(y^2 -x^2 -1)=0$

Mình gõ lộn thành $+1$ tối về giải nốt h đang dạy


$LOVE (x) \bigg |_{x=e}^{\Omega} =+\infty$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  tien.vuviet 
Tống Văn Nghĩa (19-12-2013)
  #3  
Cũ 19-12-2013, 16:24
Avatar của Tống Văn Nghĩa
Tống Văn Nghĩa Tống Văn Nghĩa đang ẩn
Quản Lý Diễn Đàn
Đến từ: THPT
Nghề nghiệp: ABC
Sở thích: Tự do
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 548
Điểm: 210 / 7933
Kinh nghiệm: 95%

Thành viên thứ: 2652
 
Tham gia ngày: Jan 2013
Bài gửi: 631
Đã cảm ơn : 329
Được cảm ơn 485 lần trong 271 bài viết

Mặc định Re: Giải hệ phương trình: $\left\{\begin{matrix} x^{4}+y^{4}+x^{2}-y^{2}=2x^{2}y^{2} & \\ (2x+3)y+2y^{2}+x+1=0 & \end{matrix}\right.$

Nguyên văn bởi tien.vuviet Xem bài viết
Pt (1) tính $\Delta$ theo $y$

$y^4 -(1+2x^2)y^2 +x^4 +x^2=0$

$\Delta = (1+2x^2)^2 -4x^4 -4x^2=1$

Tóm lại $y^4 -(1+2x^2)y^2 +x^4 +x^2=0$

$\Leftrightarrow (y^2-x^2)(y^2 -x^2 +1)=0$
Có chút nhầm lẫn , bài này chỉ khó ở giải quyết phương trình số 2


Còn sống là còn nỗ lực


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Tống Văn Nghĩa 
tien.vuviet (19-12-2013)
  #4  
Cũ 19-12-2013, 16:29
Avatar của NTH 52
NTH 52 NTH 52 đang ẩn
Bùi Đình Hiếu
Đến từ: VLPT, sedo
Nghề nghiệp: SV-smod-mod
Sở thích: Toán-Lí
 
Cấp bậc: 28 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 69 / 690
Điểm: 351 / 9707
Kinh nghiệm: 61%

Thành viên thứ: 4755
 
Tham gia ngày: Feb 2013
Bài gửi: 1.053
Đã cảm ơn : 287
Được cảm ơn 1.512 lần trong 604 bài viết

Mặc định Re: Giải hệ phương trình: $\left\{\begin{matrix} x^{4}+y^{4}+x^{2}-y^{2}=2x^{2}y^{2} & \\ (2x+3)y+2y^{2}+x+1=0 & \end{matrix}\right.$

Nguyên văn bởi tongvannghia Xem bài viết
Giải hệ phương trình: $\left\{\begin{matrix}
x^{4}+y^{4}+x^{2}-y^{2}=2x^{2}y^{2} & \\
(2x+3)y+2y^{2}+x+1=0 &
\end{matrix}\right.$
Anh Nghĩa chế hơi lộ ạ, nhưng đó là cái chế được, đáng tự hào:
Giải:
Từ phương trình (1) ta có:
$$(x^2-y^2) (x^2+1-y^2)=0.$$
Coi (2) là phương trình bậc 2 ẩn y tham số x
$$\Delta =(2x+1)^2.$$
Từ đó ta có $y=-\dfrac{1}{2}$ hoặc $y=-x-1$
Kết hợp lại ta có nghiệm của hệ là $(x;y)=(\dfrac{1}{2}; -\dfrac{1}{2}); (-\dfrac{1}{2}; -\dfrac{1}{2}); (\dfrac{1+\sqrt{5}}{2}; \dfrac{-\sqrt{5}-3}{2}); (\dfrac{1-\sqrt{5}}{2}; \dfrac{\sqrt{5}-3}{2}); (0;1)$


MY FACEBOOK:https://www.facebook.com/hieu.buidinh.54
MY BLOG:http://hieubuidinh.blogspot.com
Cuốn sách mới nhất: Chinh phục bài tập Vật lý - Điện xoay chiều
Bìa sách: https://www.facebook.com/photo.php?f...type=1&theater
Trích đoạn: http://goo.gl/WNNkZi
Nhóm giải đáp thắc mắc liên quan tới cuốn sách: https://www.facebook.com/groups/1559972954254499/


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  NTH 52 
Tống Văn Nghĩa (19-12-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Giải hệ phương trình $\left\{\begin{matrix} 4\sqrt{1+2x^{2}y}-1=3x+2\sqrt{1-2x^{2}y}+\sqrt{1-x^{2}}\\ 2x^{3}y-x^{2}=\sqrt{x^{4}+x^{2}}-2x^{3}y\sqrt{4y^{2}+1} \end{matrix}\right.$ youngahkim Giải hệ phương trình 1 05-06-2016 01:35
Giải hệ phương trình $\left\{\begin{matrix} x^{2}(1+4x)=\sqrt{y}(\frac{x+y}{2})\\ 3\sqrt{2x-1}+x\sqrt{5-y}-y \end{matrix}\right.$ youngahkim Giải hệ phương trình 0 29-05-2016 23:09
Giải hệ phương trình $\left\{\begin{matrix} x^{2}(1+4x)=\sqrt{y}(\frac{x+y}{2})\\ 3\sqrt{2x-1}+x\sqrt{5-y}-y \end{matrix}\right.$ youngahkim Giải hệ phương trình 0 29-05-2016 22:51
Giải hệ phương trình $\left\{\begin{matrix} \sqrt{x^{2}+4}+\sqrt{x^{2}-2xy+y^{2}}+\sqrt{y^{2}-6y+10}=5\\ log_{3}8xyz^{3}+(log_{3}\frac{3x^{2}z}{y})^{2}=10l og_{9}z^{2} \end{matrix}\right.$ youngahkim Giải hệ phương trình 0 26-04-2016 19:23
Giải hệ phương trình $\left\{\begin{matrix} 4x^{3} -12x^{2}+15x=(y+1)\sqrt{2y-1}+7 \\ 6(x-2)y-x+26=6\sqrt[3]{16x+24y-28} \end{matrix}\right.$ Maruko Chan Giải hệ phương trình 0 23-04-2016 22:59



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014