Thần đồng toán học Terence Tao và giải fields năm 2006 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TRÍ - GIAO LƯU giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Nơi hỏi - yêu cầu sách, vở, tài liệu... giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Các môn học khác

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 19-12-2013, 13:53
Avatar của ma29
ma29 ma29 đang ẩn
songoku
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 458
Điểm: 144 / 6050
Kinh nghiệm: 34%

Thành viên thứ: 13065
 
Tham gia ngày: Jun 2013
Bài gửi: 434
Đã cảm ơn : 202
Được cảm ơn 279 lần trong 119 bài viết

Lượt xem bài này: 1017
Mặc định Thần đồng toán học Terence Tao và giải fields năm 2006

Ngoài Perelman, còn có 3 nhà toán học khác được trao tặng giải thưởng Fields 2006, gồm có: Andrei Okounkov, Wendelin Werner và thần đồng Toán học Terence Tao.

Terence Tao sinh ngày 17-7-1975 tại Adelaide, South Australia, Úc. Ở tuổi 31 (năm 2006), anh là một trong những người trẻ nhất từ trước tới nay đoạt huy chương Fields - được coi như "giải thưởng Nobel của toán học".

Tháng 1-2007, khoảng 400 người tập trung tại một giảng đường ở Đại học UCLA (California, Mỹ) để nghe buổi nói chuyện về các số nguyên tố - một dịp hiếm hoi mà thính giả chỉ đủ chỗ để đứng. Nhiều người theo dõi qua màn hình video trong lớp học bên cạnh, nhiều người phải ra về. Bài nói chuyện dài 60 phút còn được truyền trực tiếp trên internet, sinh viên xin chữ ký của diễn giả như là đến với ngôi sao nhạc rock.

Các đồng nghiệp thường gọi đùa tiến sĩ Terence Tao là một ngôi sao nhạc rock và là “Mozart của toán học”. Hai bảo tàng ở Australia đề nghị được trưng bày ảnh của anh vĩnh viễn. Và anh là người lọt vào chung kết giải thưởng Người Australia của năm 2007. Tuy nhiên, không có giải thưởng hay sự nổi tiếng nào ảnh hưởng nhiều tới anh.

Trong văn phòng, anh treo một bức poster Ranma - tên một cuốn truyện tranh của Nhật. Anh thường mặc áo ngắn tay Adidas, quần jean xanh và giày đế mềm như các thực tập sinh. Anh nói chẳng biết làm thế nào để tiêu số tiền của học bổng MacArthur Fellowship.

Tố chất thần đồng

Terence Tao đã giải quyết hàng loạt các bài toán lớn, bao gồm những bài liên quan đến các số nguyên tố và giải thuật nén hình. Tháng 8-2006, anh đã đoạt huy chương Fields.

Anh cũng là người thứ 707 vừa nhận học bổng MacArthur Fellowship, một trong những giải thưởng lớn của Mỹ mỗi năm dành cho khoảng 20-40 người có công trình sáng tạo xuất sắc với số tiền thưởng là 500.000 đôla trao dần trong 5 năm.
Sự thành thạo của Terence Tao đối với các con số xuất hiện từ khi anh còn rất nhỏ tuổi. “Tôi luôn thích những con số”, anh nói. Cậu bé Terry Tao 2 tuổi thường dùng các khối đồ chơi để chỉ cho những đứa trẻ lớn hơn cách đếm. Cậu rất nhanh biết nói và thường dùng các khối để đánh vần các từ như “chó” và “mèo”.

Cha mẹ Terry đưa cậu bé vào học một trường tư khi cậu 3 tuổi rưỡi. Sau 6 tuần, họ cho cậu nghỉ học vì cậu không thích bỏ thời gian ngồi trong một lớp học, và các giáo viên thì không thích dạy một cậu bé như vậy.

Lên 5 tuổi, cậu được ghi danh vào một trường công, và cha mẹ cậu, những nhà quản lý hành chính cũng như các giáo viên đã thiết lập một chương trình học riêng cho cậu. Cậu học mỗi môn bằng tốc độ của riêng mình, nhanh chóng vượt qua một vài lớp trong môn toán và khoa học trong khi vẫn học ở nhóm tuổi của mình với những môn học khác.

Chẳng hạn ở giờ học văn, cậu trở nên bối rối khi phải viết bài luận. Được giao viết một câu chuyện về những gì đang diễn ra ở nhà, Terry đi từ phòng này sang phòng khác và ghi tất cả những thứ quan sát thấy vào một danh sách chi tiết. Khi bảy tuổi rưỡi, cậu bắt đầu vào học các lớp toán ở trường trung học.

Kim tự tháp tri thức

Ông Billy Tao biết rõ đường đi của những đứa trẻ thần đồng như Jay Luo, người đã tốt nghiệp với bằng toán học ở Đại học bang Boise năm 1982 ở tuổi 12, nhưng cũng từ đó biến mất khỏi thế giới toán học. “Ban đầu tôi chỉ nghĩ là Terry cũng sẽ giống như một người trong số họ, tốt nghiệp càng sớm càng tốt”. Nhưng sau khi nói chuyện với các chuyên gia về giáo dục dành cho những đứa trẻ thiên tài, người cha này đã thay đổi ý định.

“Để lấy được một tấm bằng ở độ tuổi còn trẻ, hay để trở thành người phá kỷ lục, thì chẳng có nghĩa lý gì. Tôi có một mô hình kim tự tháp tri thức, với một cái nền rộng và sau đó kim tự tháp có thể lên cao hơn. Nếu bạn chỉ nhanh chóng đi lên như một cái cột, thì chắc chắn bạn sẽ dễ bị lung lay ở trên đỉnh và rồi đổ sụp xuống”. Và Billy Tao đã sắp xếp cho các giáo sư toán học làm thầy dạy cho con mình.

Hai năm sau, Terry đã vào học các lớp toán và vật lý trình độ đại học. Cậu đặc biệt xuất sắc trong các kỳ thi toán quốc tế. Cha mẹ cậu quyết định sẽ không cho cậu vào học trong trường cao đẳng toàn thời gian, mà chia thời gian học giữa trường trung học và ĐH Flinders, một trường đại học ở Adelaide. Cuối cùng, cậu chỉ vào học như là một sinh viên cao đẳng toàn thời gian ở Flinders khi đã 14 tuổi. Hai năm sau khi cậu tốt nghiệp thì cha mẹ mới để cho cậu chỉ theo học những khả năng hàn lâm của mình.

Terry hoàn thành bằng đại học của mình trong hai năm, một năm sau thì lấy bằng thạc sĩ, rồi đến 20 tuổi trở thành tiến sĩ. Mặc dù anh nói anh chưa bao giờ cảm thấy lạc lõng trong một lớp học có nhiều sinh viên lớn tuổi hơn mình rất nhiều, ĐH Princeton là nơi mà anh cảm thấy phù hợp trong một nhóm những người cùng đẳng cấp tư duy. Anh vẫn còn trẻ, nhưng không phải lúc nào cũng luôn là sinh viên sáng giá nhất.

Cuộc phiêu lưu với số

"Để lấy được một tấm bằng ở độ tuổi còn trẻ, hay để trở thành người phá kỷ lục, thì chẳng có nghĩa lý gì", nhờ quan điểm sáng suốt của người cha mà Terence Tao đã có một sự nghiệp thành công.

Công trình toán học nổi tiếng nhất của Terence Tao liên quan đến các số nguyên tố - những số nguyên dương lớn hơn 1, chỉ chia hết cho 1 và cho chính nó. Những số nguyên tố đầu tiên là 2, 3, 5, 7, 11, 13. Khi các số này có giá trị lớn hơn, các số nguyên tố trở nên thưa thớt hơn, nhưng nhà toán học Hy Lạp Euclid đã chứng minh vào năm 300 trước Công nguyên rằng, dù sao thì các số lượng các số nguyên tố cũng là vô hạn.

Rất nhiều câu hỏi về các số nguyên tố vẫn tiếp tục chưa tìm được câu trả lời. Euclid cũng tin rằng có vô hạn những “số nguyên tố sinh đôi” (twin primes), nghĩa là những cặp số nguyên tố cách nhau 2 đơn vị, ví dụ như 3 và 5, 11 và 13 - nhưng ông không thể chứng minh được ước đoán của mình. Và cũng chưa từng có ai sau ông 2.300 năm làm được điều đó.

Một câu hỏi chưa được trả lời khác là: liệu có những mẫu dạng ẩn (hidden patterns) tồn tại trong chuỗi số nguyên tố hay không hoặc chúng có xuất hiện một cách ngẫu nhiên hay không. Vào năm 2004, Terence Tao, cùng với Ben Green, một nhà toán học thuộc ĐH Cambridge ở Anh, đã giải một bài toán liên quan đến phỏng ước về số nguyên tố sinh đôi (Twin Prime Conjecture) bằng cách xem xét sự phát triển của chuỗi số nguyên tố - những chuỗi số có khoảng cách bằng nhau (ví dụ, các số 3, 7, 11 tạo thành một dãy số nguyên tố có khoảng cách là 4, số tiếp theo trong dãy là 15 thì không phải là số nguyên tố). Terence Tao và tiến sĩ Green chứng minh rằng luôn luôn có thể tìm thấy, ở đâu đó trong vô số các số nguyên, một dãy số nguyên tố với bất kỳ khoảng cách nào và bất kỳ độ dài nào.

“Terry có một phong cách mà rất ít người có”, tiến sĩ Fefferman nhận xét. “Khi anh ấy giải bài toán, bạn sẽ nghĩ, điều này quá rõ ràng mà sao mình lại không phát hiện ra! Tại sao 100 người xuất sắc đã nghĩ về điều này trước đây lại không nghĩ ra?”.

có anh nào biết là cái người này dạy học thế nào không vậy


Chủ đề được quan tâm nhiều nhất:

Attached Thumbnails
Ấn vào hình để xem hình to hơn Tên:	s6274276.jpg‎ Xem:	14 KT :	20,9 KB ID :	1774  


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 23-12-2013, 09:03
Avatar của ma29
ma29 ma29 đang ẩn
songoku
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 458
Điểm: 144 / 6050
Kinh nghiệm: 34%

Thành viên thứ: 13065
 
Tham gia ngày: Jun 2013
Bài gửi: 434
Đã cảm ơn : 202
Được cảm ơn 279 lần trong 119 bài viết

Mặc định Re: Thần đồng toán học Terence Tao và giải fields năm 2006

Những người làm việc trên toán hiện đại họ dạy rất kì khôi vì chính họ cũng không biết làm sao truyền đạt cái hiểu của họ cho người học nữa


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Giải toán Hình học không gian qua các đề thi thử THPT Quốc Gia 2016 FOR U [Tài liệu] Hình học Không Gian 0 02-06-2016 13:14
Giải hộ và nhận xét về bài toán: Cho hình chữ nhật ABCD, AB =2BC. Gọi G là trọng tâm tam giác ACD và F là điểm thuộc cạnh AB sao cho AB=6AF. mh10111988 Hình giải tích phẳng Oxy 0 01-06-2016 18:13
Phát hiện và giải quyết vấn đề trong bài toán hình giải tích phẳng từ những mối quan hệ ba điểm Phạm Kim Chung [Tài liệu] Hình giải tích Oxy 5 26-03-2016 09:30
Giải bài toán Hình Học Không Gian bằng phương pháp tọa độ hóa Ẩn Số [Tài liệu] Hình học Không Gian 1 31-05-2015 22:57



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
http://k2pi.net.vn/showthread.php?t=13139, k2pi.net, terry tao vs perelman.2015, thong tin terence tai.2014
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014