Câu 3 ý 2 đề thi HSG Thái Bình 2013-2014: - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN GIẢI TÍCH HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Lượng giác - Tổ hợp - Mũ & Logarit giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Lượng giác

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 07-12-2013, 22:04
Avatar của NTH 52
NTH 52 NTH 52 đang ẩn
Bùi Đình Hiếu
Đến từ: VLPT, sedo
Nghề nghiệp: SV-smod-mod
Sở thích: Toán-Lí
 
Cấp bậc: 28 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 69 / 690
Điểm: 351 / 9712
Kinh nghiệm: 61%

Thành viên thứ: 4755
 
Tham gia ngày: Feb 2013
Bài gửi: 1.053
Đã cảm ơn : 287
Được cảm ơn 1.512 lần trong 604 bài viết

Lượt xem bài này: 1392
Mặc định Câu 3 ý 2 đề thi HSG Thái Bình 2013-2014:

Câu 3.(3 điểm)
2.Cho 2 số thực x,y thỏa mãn $0<x \leq y < \pi$.Chứng minh rằng $(x^3-6x)\sin y < (y^3-6y) \sin x$


Chủ đề được quan tâm nhiều nhất:



MY FACEBOOK:https://www.facebook.com/hieu.buidinh.54
MY BLOG:http://hieubuidinh.blogspot.com
Cuốn sách mới nhất: Chinh phục bài tập Vật lý - Điện xoay chiều
Bìa sách: https://www.facebook.com/photo.php?f...type=1&theater
Trích đoạn: http://goo.gl/WNNkZi
Nhóm giải đáp thắc mắc liên quan tới cuốn sách: https://www.facebook.com/groups/1559972954254499/


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Nguyễn Thế Duy (08-12-2013), Hiệp sỹ bóng đêm (09-12-2013)
  #2  
Cũ 08-12-2013, 00:09
Avatar của Nguyễn Thế Duy
Nguyễn Thế Duy Nguyễn Thế Duy đang ẩn
Cộng Tác Viên
Đến từ: Hải Hậu
Nghề nghiệp: Học sinh nghèo !!
Sở thích: Toán học
 
Cấp bậc: 29 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 70 / 706
Điểm: 370 / 8357
Kinh nghiệm: 25%

Thành viên thứ: 17501
 
Tham gia ngày: Nov 2013
Bài gửi: 1.111
Đã cảm ơn : 227
Được cảm ơn 2.023 lần trong 753 bài viết

Mặc định Re: Câu 3 ý 2 đề thi HSG Thái Bình 2013-2014:

Xét hàm số :

$f\left(t \right) = \frac{sint}{t^{3} - 6t} $ với $t \epsilon \left(0 ; \frac{\Pi }{2} \right)$

Có : $f'\left(x \right) = \frac{cost.\left(t^{3} - 6t \right)+ sint.\left(3t^{2} - 6 \right)}{\left(t^{3} - 6t \right)^{2}}$

Vì $t \epsilon \left(0 ; \frac{\Pi }{2} \right)$ nên sint , cost > 0 và $t^{3} - 6t < 0 ; 3t^{2} - 6 < 0$

nên $f'\left(t \right) < 0 $

$\Rightarrow $ $f\left(t \right)$ là hàm số nghịch biến

Mà x $\leq y$

$\Rightarrow f\left(y \right) \leq f\left(x \right)$

hay $\left(x^{3} - 6x \right).siny \leq \left(y^{3} - 6y \right).sinx$


Gỉa sử $z$ là số bé nhất , khi đó $z^{2} \leq xz $ ; $yz$ và $x + y \leq 3$ nên ta có điều sau :

$\begin{align*}
P &\leq \left(x^2 - xy + y^2 \right)x^2y^2 \\
&= \left(\left(x + y \right)^2 - 3xy \right)x^2y^2 \\
&\leq \left(9 - 3xy \right)x^2y^2 \\
&= 12 - 3\left(xy - 2 \right)^2\left(1 + xy \right) \\
&\leq 12
\end{align*}$

Do đó kết luận GTLN của $P$ bằng $12$ khi và chỉ khi $x = 2$ ; $y = 1$ ; $ z = 0$


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
haituatcm (14-09-2016), NTH 52 (08-12-2013)
  #3  
Cũ 12-03-2014, 03:06
Avatar của hung33
hung33 hung33 đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 0
Điểm: 0 / 0
Kinh nghiệm: 0%

Thành viên thứ: 13035
 
Tham gia ngày: Jun 2013
Bài gửi: 1
Đã cảm ơn : 0
Được cảm ơn 0 lần trong 0 bài viết

Mặc định Re: Câu 3 ý 2 đề thi HSG Thái Bình 2013-2014:

ở đây x thuộc khoảng (0;pi) cơ mà . Sai rồi


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Đề thi thử THPT chuyên Thái Bình Lần 5 Past Present Đề thi THPT Quốc Gia | trườngTHPT 6 14-06-2016 15:47



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014