Cho $x$, $y$, $z$ là các số thực dương thỏa mãn $x \leq z$. Tìm giá trị nhỏ nhất của biểu thức : $P= \sqrt{2+\dfrac{2x^2}{\left(x +y \right)^2}-\dfrac{2z \left(2y+z \right)}{\left ( y+z \right)^2}}+\dfrac{3z}{z+x}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 28-11-2013, 22:50
Avatar của phatthientai
phatthientai phatthientai đang ẩn
Thành viên Chính thức
Nghề nghiệp: Học sinh
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 658
Điểm: 315 / 9017
Kinh nghiệm: 35%

Thành viên thứ: 8227
 
Tham gia ngày: Apr 2013
Bài gửi: 946
Đã cảm ơn : 108
Được cảm ơn 265 lần trong 190 bài viết

Lượt xem bài này: 363
Mặc định Cho $x$, $y$, $z$ là các số thực dương thỏa mãn $x \leq z$. Tìm giá trị nhỏ nhất của biểu thức : $P= \sqrt{2+\dfrac{2x^2}{\left(x +y \right)^2}-\dfrac{2z \left(2y+z \right)}{\left ( y+z \right)^2}}+\dfrac{3z}{z+x}$

Cho $x$, $y$, $z$ là các số thực dương thỏa mãn $x \leq z$. Tìm giá trị nhỏ nhất của biểu thức :
$$P= \sqrt{2+\dfrac{2x^2}{\left(x +y \right)^2}-\dfrac{2z \left(2y+z \right)}{\left ( y+z \right)^2}}+\dfrac{3z}{z+x}$$


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 28-11-2013, 23:26
Avatar của Miền cát trắng
Miền cát trắng Miền cát trắng đang ẩn
Mãi yêu người- MT
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 656
Điểm: 312 / 9834
Kinh nghiệm: 25%

Thành viên thứ: 985
 
Tham gia ngày: Oct 2012
Bài gửi: 938
Đã cảm ơn : 2.200
Được cảm ơn 2.234 lần trong 558 bài viết

Mặc định Re: Cho $x$, $y$, $z$ là các số thực dương thỏa mãn $x \leq z$. Tìm giá trị nhỏ nhất của biểu thức : $P= \sqrt{2+\dfrac{2x^2}{\left(x +y \right)^2}-\dfrac{2z \left(2y+z \right)}{\left ( y+z \right)^2}}+\dfrac{3z}{z+x}$

Nguyên văn bởi phatthientai Xem bài viết
Cho $x$, $y$, $z$ là các số thực dương thỏa mãn $x \leq z$. Tìm giá trị nhỏ nhất của biểu thức :
$$P= \sqrt{2+\dfrac{2x^2}{\left(x +y \right)^2}-\dfrac{2z \left(2y+z \right)}{\left ( y+z \right)^2}}+\dfrac{3z}{z+x}$$
Nguyên văn bởi Phạm Kim Chung Xem bài viết
Với giải thiết đã cho không còn cách nào khác là quy về biến $t=\frac{z}{x}\ge 1$

\[\begin{array}{l}
\bullet \,\,\,\,2 + \frac{{2{x^2}}}{{{{\left( {x + y} \right)}^2}}} - \frac{{4zy + 2{z^2}}}{{{{\left( {y + z} \right)}^2}}} = 2 + \frac{2}{{{{\left( {1 + \frac{y}{x}} \right)}^2}}} - \frac{{\frac{{2{z^2}}}{{{y^2}}} + \frac{{4z}}{y}}}{{{{\left( {1 + \frac{z}{y}} \right)}^2}}} = \frac{2}{{{{\left( {1 + \frac{y}{x}} \right)}^2}}} + \frac{2}{{{{\left( {1 + \frac{z}{y}} \right)}^2}}}\\
= \left( {1 + 1} \right)\left( {\frac{1}{{{{\left( {1 + \frac{y}{x}} \right)}^2}}} + \frac{1}{{{{\left( {1 + \frac{z}{y}} \right)}^2}}}} \right) \ge {\left( {\frac{1}{{\left( {1 + \frac{y}{x}} \right)}} + \frac{1}{{\left( {1 + \frac{z}{y}} \right)}}} \right)^2} \ge \frac{4}{{{{\left( {1 + \sqrt {\frac{z}{x}} } \right)}^2}}}
\end{array}\]

Xét hàm số :
\[ \bullet \,\,\,\,f(t) = \frac{4}{{{{\left( {1 + \sqrt t } \right)}^2}}} + \frac{{3t}}{{t + 1}},\,\,t \ge 1\]

PS: Hàm này chứng minh nó đồng biến cũng khó xơi đó nha!



Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho x,y là 2 số thực dương thoả mãn xy = 2. Tìm Min của biểu thức $M=\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}$ caoyng_neu Chương trình Toán lớp 9 1 13-02-2017 21:55
Cho các số thực dương $a, b, c$. Tìm GTNN của biểu thức. khanhtoanlihoa Bất đẳng thức - Cực trị 1 16-05-2016 13:10



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014