Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014 - Trang 41 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #161  
Cũ 30-11-2013, 16:11
Avatar của khanhsy
khanhsy khanhsy đang ẩn
Quản Lý Diễn Đàn
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 323
Điểm: 74 / 4038
Kinh nghiệm: 94%

Thành viên thứ: 16240
 
Tham gia ngày: Sep 2013
Bài gửi: 223
Đã cảm ơn : 63
Được cảm ơn 310 lần trong 144 bài viết

Mặc định Re: Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014

Nguyên văn bởi Miền cát trắng Xem bài viết
Bài 60. Cho $a,b,c$ là các số thực không đồng thời bằng $0$ thoả mãn $(a+b+c)^2=2(a^2+b^2+c^2)$. Tìm giá trị lớn nhất, và giá trị nhỏ nhất của biểu thức
$$P=\dfrac{a^3+b^3+c^3}{(ab+bc+ca)(a+b+c)} $$
$$\text{ Chuẩn hóa } \begin{cases} a+b+c=2 \\ a^2+b^2+c^2=2\\ ab+bc+ca=\dfrac{(a+ b+c)^2-(a^2+b^2+c^2)}{2}=1 \end{cases} $$ Khi đó dễ thấy rằng $ 0 \le abc \le \dfrac{4}{27} $

$$P:= \dfrac{(a+b+c)(a^2+b^2+c^2-ab-bc-ca)+3abc}{2}=\dfrac{3abc+2}{2} $$
$$\rightarrow 1\le P \le \dfrac{11}{9} $$

Từ đây chúng ta có giá trị $min, max$ rất dễ dàng .


Chủ đề được quan tâm nhiều nhất:



ÁC TÀI LÀ ĐỘC KHÍ CỦA QUỐC GIA


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Lê Đình Mẫn (30-11-2013), Miền cát trắng (30-11-2013)
  #162  
Cũ 30-11-2013, 16:14
Avatar của Miền cát trắng
Miền cát trắng Miền cát trắng đang ẩn
Mãi yêu người- MT
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 656
Điểm: 312 / 9860
Kinh nghiệm: 25%

Thành viên thứ: 985
 
Tham gia ngày: Oct 2012
Bài gửi: 938
Đã cảm ơn : 2.200
Được cảm ơn 2.234 lần trong 558 bài viết

Mặc định Re: Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014

Bài 67. Cho $a,b,c>0$ và $a+b+c=3; a^2+b^2+c^2=4$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của $P=\dfrac{a}{b}$



Báo cáo bài viết xấu Trả lời với trích dẫn
  #163  
Cũ 30-11-2013, 17:13
Avatar của Đặng Thành Nam
Đặng Thành Nam Đặng Thành Nam đang ẩn
Quản Lý Diễn Đàn
Đến từ: Phú Thọ
 
Cấp bậc: 26 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 627
Điểm: 282 / 9338
Kinh nghiệm: 11%

Thành viên thứ: 1209
 
Tham gia ngày: Nov 2012
Bài gửi: 848
Đã cảm ơn : 515
Được cảm ơn 1.462 lần trong 525 bài viết

Mặc định Re: Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014

Nguyên văn bởi Popeye Xem bài viết
Đặt $a=\tan A,b=\tan B,c=\tan C$
Khi đó
\[P=\dfrac{\sin 2A+\sin 2B+\sin 2C}{2}=\sin C\cos (A-B)+\sin C\cos C\leqslant \sin C(1+\cos C)\]

\[\sin C(1+\cos C)=\sqrt{(1-cosC)(1+cosC)^3}=\dfrac{1}{\sqrt{3}}\sqrt{(3-3\cos C)(1+cosC)(1+cosC)(1+cosC)} \leqslant \dfrac{9}{4\sqrt{3}}\]
Vậy $Pmax=\dfrac{9}{4\sqrt{3}}$
Có vẻ không phù hợp lắm
Bài này có cách hàm số đó em


Giáo viên Toán tại website vted.vn - Học toán online chất lượng cao!
Chi tiết các khoá học các bạn xem tại link: http://vted.vn/khoa-hoc.html


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Đặng Thành Nam 
Miền cát trắng (30-11-2013)
  #164  
Cũ 30-11-2013, 18:44
Avatar của duyanh175
duyanh175 duyanh175 đang ẩn
Chiếc lá cuối cùng
 
Cấp bậc: 23 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 551
Điểm: 212 / 7178
Kinh nghiệm: 6%

Thành viên thứ: 14906
 
Tham gia ngày: Jul 2013
Bài gửi: 638
Đã cảm ơn : 483
Được cảm ơn 1.023 lần trong 461 bài viết

Mặc định Re: Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014

Bài 68 : Cho 3 số thực không âm $a,b,c$ thỏa mãn : $a+b+c=5$. Tìm GTLN biểu thức :

$P=\frac{1}{\sqrt{a+4}}+\frac{1}{\sqrt{b+4}}+\frac {1}{\sqrt{c+4}}$


Nguyên văn bởi Miền cát trắng Xem bài viết
Bài 64. Cho $a,b,c$ là các số thực dương thoả mãn $abc=a+b+c$. Tìm giá trị lớn nhất của biểu thức $$\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^ 2}$$

Giả sử $c=min\begin{Bmatrix}
a,b,c
\end{Bmatrix}$. Ta có : $1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\leq \frac{3}{c^{2}}\Rightarrow 0<c\leq \sqrt{3}$ và : $c=\frac{a+b}{ab-1}$


$P=\frac{\left(a+b \right)\left(ab+1 \right)}{\left(a^{2}+1 \right)\left(b^{2}+1 \right)}+\frac{c}{c^{2}+1}\leq \frac{a+b}{\sqrt{\left(a^{2}+1 \right)\left(b^{2} +1\right)}}+\frac{c}{c^{2}+1}=\frac{c}{\sqrt{c^{2} +1}}+\frac{c}{c^{2}+1}$


$\Rightarrow P\leq c\left(\frac{1}{c^{2}+1} +\frac{1}{4}\right)+\frac{c}{c^{2}+1}=\frac{c}{4}+ \frac{2c}{c^{2}+1}$


$\Rightarrow P\leq \frac{3\sqrt{3}}{4}+\frac{\left(c-\sqrt{3} \right)^{3}}{4\left(c^{2}+1 \right)}\leq \frac{3\sqrt{3}}{4}$


Vậy : $P_{max}=\frac{3\sqrt{3}}{4} . Khi : a=b=c=\sqrt{3}.$


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Lê Đình Mẫn (30-11-2013), Miền cát trắng (30-11-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Tài Liệu Chọn lọc một số bài Bất Đẳng Thức từ diễn đàn K2pi Trần Quốc Việt [Tài liệu] Bất đẳng thức 1 27-05-2016 13:21
Bất đẳng thức cực trị Trangsf Bất đẳng thức - Cực trị 1 23-05-2016 01:09
Bộ Giáo dục thay đổi phương thức xét tuyển đại học, cao đẳng FOR U Tin tức Giáo dục 24h 0 13-05-2016 09:47
SPHN lần 3;Với các số thục dương $x,y$. Chứng minh bất đẳng thức: $\frac{1}{x+y+1}-\frac{1}{\left( x+1 \right)\left( y+1 \right)}<\frac{1}{11}$ catbuilata Bất đẳng thức - Cực trị 0 21-04-2016 13:13
Sử dụng bất đẳng thức để giải bất phương trình hthtb22 [Tài liệu] Phương trình-BPT vô tỷ 4 10-04-2016 09:11



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
3abc- 2014a-b-c, Ôn thi cùng các cao thủ bđt-facebook, bat dang thuc, bat dang thuc nao se thi 2014, bất đẳng thức luyện thi đại học 2014, bất đẳng thức thi 2014, bất đẳng thức thi đại học, các bất đẳng thức thi đại học, cho a b c >0 v* (a b c)^3= 32abc tìm, chuyên đề bất đăng thức ôn đại học 2014, imo 2006 bat dang thuc, phương pháp gọi số hạng vắng, tim gtnn p=3abc-2014a, tim min p=3abc-2014, tim min p=3abc-2014a, timf min p = xy yz zt tx, toan luyen tp chung trang52, topic bat dang thuc luyen thi dai hoc 2014 k2pi, topic bất đẳng thức luyện thi đh 2014 k2pi, topic luyen thi dai hoc 2014 k2pi, toppic bat dang thuc, xy yz zt tx=1 tim gtnn, xy yz zx = 1 tìm gtnn p=x^2 my^2 nz^2
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014