Karl-Theodor-Wilhelm-Weierstrass-1815-–-1897 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TRÍ - GIAO LƯU giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Nơi hỏi - yêu cầu sách, vở, tài liệu... giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Các môn học khác

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 01-11-2013, 10:27
Avatar của NTH 52
NTH 52 NTH 52 đang ẩn
Bùi Đình Hiếu
Đến từ: VLPT, sedo
Nghề nghiệp: SV-smod-mod
Sở thích: Toán-Lí
 
Cấp bậc: 28 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 68 / 689
Điểm: 350 / 9688
Kinh nghiệm: 59%

Thành viên thứ: 4755
 
Tham gia ngày: Feb 2013
Bài gửi: 1.052
Đã cảm ơn : 287
Được cảm ơn 1.511 lần trong 603 bài viết

Lượt xem bài này: 3245
Mặc định Karl-Theodor-Wilhelm-Weierstrass-1815-–-1897

Karl Theodor Wilhelm Weierstrass (1815 – 1897)
Karl Theodor Wilhelm Weierstrass (Weierstraß) (31 tháng 10, 1815 – 19 tháng 2, 1897) là một nhà toán học người Đức, người được coi là "cha đẻ của giải tích toán học".

Weierstrass sinh ra tại Ostenfelde, nằm trong Ennigerloh thuộc bang Nordrhein-Westfalen.
Click the image to open in full size.
Weierstrass là con trai của ông Wilhelm Weierstrass, là một nhân viên chính phủ, và bà Theodora Vonderforst. Ông yêu thích toán học khi còn là sinh viên Gymnasium. Ông học tiếp đại học Bonn để chuẩn bị cho một vị trí trong chính phủ. Do ông cũng học các ngành khác như luật, kinh tế, và tài chính nên ông cũng phải đấu tranh để chọn toán học hay là những ngành đó. Cuối cùng ông quyết định để ý một chút đến các ngành đó và đồng thời tự học toán học. Kết quả là ông không nhận được bằng tốt nghiệp đại học. Sau đó ông tiếp tục học toán tại trường đại học danh tiếng về toán học thời đó là đại học Münster do bố ông tìm được một vị trí giảng dạy cho ông tại trường này. Trong quá trình học, Weierstrass đã tham dự các bài giảng của Christoph Gudermann và bắt đầu thích thú với các hàm elliptic.

Từ năm 1850 Weierstrass phải trải qua những trận ốm liên miên, nhưng ông vẫn viết các bài báo khiến ông trở nên tiếng tăm và nổi bật. Ông cũng giữ chức chủ tịch tại đại học kỹ thuật Berlin (Gewerbeinstitut). Ông phải nằm liệt trong vòng ba năm cuối đời và mất tại Berlin do viêm phổi.

Các công trình toán học

Weierstrass rất chú tâm đến vấn đề logic của giải tích. Tại thời gian này, có nhiều định nghĩa không rõ ràng về các cơ sở của giải tích, và một số định lý quan trọng không thể được chứng minh một cách chặt chẽ. Trong khi Bernard Bolzano đã đưa ra một định nghĩa có tính nghiêm ngặt của giới hạn vào đầu năm 1817 (hoặc sớm hơn) nhưng nó vẫn không được cộng đồng toán học chú ý đến trong nhiều năm sau, do vậy đã có rất nhiều định nghĩa mơ hồ về giới hạn và tính liên tục của hàm số.

Cauchy đã đưa ra dạng định nghĩa giới hạn (ε,δ), trong khi đưa ra định nghĩa hình thức của đạo hàm vào các năm 1820, nhưng đã không phân biệt một cách đúng đắn giữa liên tục tại một điểm và liên tục đều trên một khoảng, do thiếu tính chặt chẽ. Đặc biệt, trong Cours d'analyse, (1821) Cauchy đưa ra một chứng minh sai rằng giới hạn(pointwise) của các hàm liên tục (pointwise) chính là liên tục (pointwise). Phát biểu đúng phải là giới hạn đều của các hàm liên tục đều là liên tục đều.

Điều này đòi hỏi khái niệm hội tụ đều, được chú ý đầu tiên bởi thầy của Weierstrass, Christoph Gudermann, trong một bài báo (1838) Gudermann đã chú ý đến điều này nhưng không định nghĩa hoặc đào sâu nó. Weierstrass đã nhìn thấy ý nghĩa quan trọng của nó và đã hình thức hóa nó đồng thời áp dụng rộng rãi vào các cơ sở của giải tích.

Định nghĩa giới hạn theo (ε,δ) của Weierstrass như sau:
f(x) là liên tục tại x=x0 nếu với mỗi ε>0 ∃ δ>0 sao cho
|x−x0|<δ⇒|f(x)−f(x0)|<ε.
Sử dụng định nghĩa này và khái niệm hội tụ đều, Weierstrass đã chứng minh được một số định lý mà trước đó chưa được chứng minh như 'Định lý giá trị trung bình', 'Định lý Bolzano-Weierstrass', 'Định lý Heine-Borel'.


Weierstrass cũng đóng ghóp quan trọng vào sự phát triển của phép tính biến phân. Sử dụng công cụ giải tích đã phát triển, ông đã hoàn thiện hình thức luận của lý thuyết cho sự nghiên cứu ngày nay của phép tính biến phân.


Theo Wikipedia


Chủ đề được quan tâm nhiều nhất:



MY FACEBOOK:https://www.facebook.com/hieu.buidinh.54
MY BLOG:http://hieubuidinh.blogspot.com
Cuốn sách mới nhất: Chinh phục bài tập Vật lý - Điện xoay chiều
Bìa sách: https://www.facebook.com/photo.php?f...type=1&theater
Trích đoạn: http://goo.gl/WNNkZi
Nhóm giải đáp thắc mắc liên quan tới cuốn sách: https://www.facebook.com/groups/1559972954254499/


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 16-12-2013, 01:58
Avatar của NTH 52
NTH 52 NTH 52 đang ẩn
Bùi Đình Hiếu
Đến từ: VLPT, sedo
Nghề nghiệp: SV-smod-mod
Sở thích: Toán-Lí
 
Cấp bậc: 28 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 68 / 689
Điểm: 350 / 9688
Kinh nghiệm: 59%

Thành viên thứ: 4755
 
Tham gia ngày: Feb 2013
Bài gửi: 1.052
Đã cảm ơn : 287
Được cảm ơn 1.511 lần trong 603 bài viết

Mặc định tHỨ 6 NGÀY 13-NHÌN NHẬN DƯỚI LĂNG KÍNH tOÁN HỌC

Ở một số nước phương Tây, người ta cho rằng thứ sáu ngày 13 là ngày rủi ro. Tuy nhiên, báo Le Figaro (Pháp) số ra ngày 11-3-2009 cho biết số người mua lô tô tại Pháp vào thứ sáu ngày 13 cao gấp 3 lần so với những ngày khác.
Hình đã gửi

Vậy thứ sáu ngày 13 có đặc điểm gì về mặt toán học và văn hóa? Nó là ngày tốt hay xấu?

Bằng lý thuyết đồng dư, toán học chứng minh được một năm bất kỳ có ít nhất một thứ sáu ngày 13 và nhiều nhất ba thứ sáu ngày 13. Hơn nữa, một năm có ba thứ sáu ngày 13 khi và chỉ khi ngày đầu năm là thứ năm (đối với năm không nhuận) hoặc chủ nhật (đối với năm nhuận). Đó là trường hợp của năm 2009: có ba thứ sáu ngày 13 rơi vào tháng hai, tháng ba và tháng mười một. Sự kiện này đã xảy ra vào năm 1998 và sẽ lặp lại vào các năm 2015, 2026.

Năm 2010 và 2011 chỉ có một thứ sáu ngày 13 mỗi năm. Năm 2012 có ba thứ sáu ngày 13 rơi vào tháng giêng, tháng tư và tháng bảy. Bộ ba “giêng, tư, bảy” này ít gặp hơn so với bộ ba “hai, ba, mười một”. Năm 2013 có hai thứ sáu ngày 13 rơi vào tháng 9 và tháng 12. Tổng cộng có 21 thứ sáu ngày 13 từ 2009 - 2019.

Cũng bằng toán học, ta tính được khoảng cách giữa hai ngày thứ sáu 13 gần nhất chỉ có thể là 27, 90, 181, 244, 272, 335 hoặc 426 ngày. Như vậy, hai thứ sáu ngày 13 gần nhất có thể cách nhau hơn một năm. Đó chính là trường hợp 13-8-1999 và 13-10-2000.

Theo Kinh Thánh, Chúa Jésus bị đóng đinh trên thập tự giá vào thứ sáu. Hơn nữa, bữa ăn cuối cùng của Chúa với các môn đồ có đúng 13 người. Việc này thường được xem là nguồn gốc việc kiêng sợ thứ sáu ngày 13.

Hình đã gửi

Kiệt tác Bữa tiệc cuối cùng của Léonardo da Vinci

Ở Ý, số 17 được gắn với sự rủi ro chứ không phải số 13. Còn ở Trung Quốc, con số này là 4 vì được phát âm gần giống với “tử” nghĩa là chết. Ở châu Mỹ Latin, ngày kiêng cữ lại là thứ ba 13.

Về mặt thống kê, hiện chưa có dữ liệu đáng tin cậy nào để gán cho thứ sáu ngày 13 với “may mắn” hay “rủi ro” theo một nghĩa nào đó. Chẳng hạn, xác suất trúng lô tô ở Pháp vào thứ sáu ngày 13 cũng giống với những ngày khác và xấp xỉ với 1/14.000.000. Xác suất nhỏ bé này không có nghĩa là bạn không thể trúng lô tô và không hề ngăn cản người chơi lô tô nuôi hi vọng!
BÀI TẬP
Hãy chứng minh:

1) Một năm bất kỳ có ít nhất một thứ sáu ngày 13 và nhiều nhất ba thứ sáu ngày 13.

2) Một năm có ba thứ sáu ngày 13 khi và chỉ khi ngày đầu năm là thứ năm (đối với năm không nhuận) hoặc chủ nhật


MY FACEBOOK:https://www.facebook.com/hieu.buidinh.54
MY BLOG:http://hieubuidinh.blogspot.com
Cuốn sách mới nhất: Chinh phục bài tập Vật lý - Điện xoay chiều
Bìa sách: https://www.facebook.com/photo.php?f...type=1&theater
Trích đoạn: http://goo.gl/WNNkZi
Nhóm giải đáp thắc mắc liên quan tới cuốn sách: https://www.facebook.com/groups/1559972954254499/


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 16-12-2013, 12:20
Avatar của NTH 52
NTH 52 NTH 52 đang ẩn
Bùi Đình Hiếu
Đến từ: VLPT, sedo
Nghề nghiệp: SV-smod-mod
Sở thích: Toán-Lí
 
Cấp bậc: 28 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 68 / 689
Điểm: 350 / 9688
Kinh nghiệm: 59%

Thành viên thứ: 4755
 
Tham gia ngày: Feb 2013
Bài gửi: 1.052
Đã cảm ơn : 287
Được cảm ơn 1.511 lần trong 603 bài viết

Mặc định Viktor Yakovlevich Bunyakovsky (1804 - 1889)

Hôm nay 16/12 là kỉ niệm ngày sinh Bunyakovsky.
Click the image to open in full size.



Nhà toán học Nga Viktor Yakovlevich Bunyakovsky sinh ngày 16-12-1804 là viện sĩ Viện Hàn lâm Khoa học Nga từ khi mới 24 tuổi và sau này trở thành chủ tịch của Viện từ năm 1864 cho tới năm 1889 là năm ông mất. Ông mất ngày 12-12-1889.


Từ 16 tuổi đến 21 tuổi ông đã theo học ở Pari, lúc đó có nhiều giáo sư nổi tiếng dạy như Laplace, Fourier, Cauchy, Legendre. Ông bảo vệ luận án tiến sĩ toán tại Pari vào năm 1825 lúc ông 21 tuổi.


Trở về nước, ở Pêtecbua ông đã hoạt đọng tích cực trong lĩnh vực giáo dục, giảng dạy toán cho đến năm 1846. Trong 15 năm sau, từ 1846 đến 1859 ông dạy tại trường Đại học Pêtecbua, phụ trách các môn cơ học giải tích, lí thuyết xác suất và giải tích toán học. Bắt đầu từ năm 1858, ông trở thành chuyên gia quan trọng của chính phủ về các vấn đề thống kê và bảo hiểm.


Có thể nói rằng lĩnh vực hoạt động của ông rất rộng lớn và đầy kết quả tốt đẹp. Ông đã có đến 168 công trình nghiên cứu. Công trình ưu việt của Bunyakovsky là lí thuyết số, lí thuyết xác suất và ứng dụng. Ông còn nghiên cứu nhiều về giải tích, hình học và đại số, quan tâm đến cả tính toán trong thực tiễn; góp phần vào việc cải tiến các tính toán của nước Nga.


Tác phẩm to lớn của ông là "Cơ sở của lí thuyết xác suất" (1846) trong đó có nhiều phần độc đáo, nhất là phần lịch sử phát sinh và phát triển môn xác suất, phần ứng dụng quan trọng của xác suất trong vấn đề bảo hiểm và dân số.v.v..


Một loạt công trình của ông về thống kê, xác suất đã góp phần đáng kể vào sự phát triển của lí thuyết thống kê ở nước Nga. Các công trình về lí thuyết số với 1 số khái niệm mới đã mang lại sự hấp dẫn đối với môn này vào thế kỉ thứ 19. Trong hình học ông cũng đã nghiên cứu về lí thuyết các đường song song.


Cùng với Ostrogradsky và Chebyshev, ông đã có vai trò lớn trong việc nâng cao trình độ khoa học của việc giảng dạy toán ở đại học và mở rộng phạm vi chương trình toán ở đại học. Ông đã viết tập "Những bài giảng về toán lí thuyết và toán ứng dụng" có giá trị lớn đối với việc giảng dạy toán cũng như đối với từ vựng khoa học. Ngoài ra đối với nhà trường phổ thông Bunyakovsky đã viết cuốn sách giáo khoa "Số học" (1844) và cuốn "Chương trình và tóm tắt môn số học".


Ông là hội viên danh dự của tất cả các trường Đại học Nga, của nhiều hội khoa học, đồng thời là phó chủ tịch Viện Hàn lâm Khoa học và Viện đã đặt ra giải thưởng mang tên ông cho những tác phẩm toán học có giá trị lớn.

----

BĐT Bunyakovsky

*Với hai bộ số (a1;a2;...;an) và (b1;b2;...;bn) ta có:

(a21+a22+...+a2n)(b21+b22+...+b2n)≥(a1b1+a2b2+.. .+anbn)2

*Dấu "=" xảy ra khi và chỉ khi a1b1=a2b2=...=anbn với quy ước nếu một số bi nào đó (i=1,2,3,...,n) bằng 0 thì ai tương ứng bằng 0.
Theo VMF.


MY FACEBOOK:https://www.facebook.com/hieu.buidinh.54
MY BLOG:http://hieubuidinh.blogspot.com
Cuốn sách mới nhất: Chinh phục bài tập Vật lý - Điện xoay chiều
Bìa sách: https://www.facebook.com/photo.php?f...type=1&theater
Trích đoạn: http://goo.gl/WNNkZi
Nhóm giải đáp thắc mắc liên quan tới cuốn sách: https://www.facebook.com/groups/1559972954254499/


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
chứng minh định lý weierstrass, giải tích karl weierstrass, tien xu nam 1889 co gia bao nhieu
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014