Cho $a,b,c\varepsilon R ; abc=2\sqrt{2}$ Tìm giá trị nhỏ nhất của biểu thức: - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 28-09-2013, 14:21
Avatar của Huy Vinh
Huy Vinh Huy Vinh đang ẩn
Quản Lý Chuyên Mục
Đến từ: TX - Thanh Hóa
Nghề nghiệp: Học Sinh
 
Cấp bậc: 14 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 344
Điểm: 83 / 5045
Kinh nghiệm: 78%

Thành viên thứ: 1842
 
Tham gia ngày: Dec 2012
Bài gửi: 250
Đã cảm ơn : 1.073
Được cảm ơn 197 lần trong 91 bài viết

Lượt xem bài này: 499
Mặc định Cho $a,b,c\varepsilon R ; abc=2\sqrt{2}$ Tìm giá trị nhỏ nhất của biểu thức:

Cho $a,b,c\varepsilon R ; abc=2\sqrt{2}$
Tìm giá trị nhỏ nhất của biểu thức:
$P= \sum \frac{a^6+b^6}{a^4+b^4+a^2b^2}$


Chủ đề được quan tâm nhiều nhất:



NGUYỄN HUY VINH


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 28-09-2013, 17:20
Avatar của minhcanh95
minhcanh95 minhcanh95 đang ẩn
Thành viên Chính thức
Đến từ: Diễn đàn Mathscope
Nghề nghiệp: Học sinh
Sở thích: Bóng đá
 
Cấp bậc: 6 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 147
Điểm: 21 / 1930
Kinh nghiệm: 89%

Thành viên thứ: 14301
 
Tham gia ngày: Jun 2013
Bài gửi: 64
Đã cảm ơn : 6
Được cảm ơn 56 lần trong 39 bài viết

Mặc định Re: Cho $a,b,c\varepsilon R ; abc=2\sqrt{2}$ Tìm giá trị nhỏ nhất của biểu thức:

Nguyên văn bởi Huy Vinh Xem bài viết
Cho $a,b,c\varepsilon R ; abc=2\sqrt{2}$
Tìm giá trị nhỏ nhất của biểu thức:
$P= \sum \frac{a^6+b^6}{a^4+b^4+a^2b^2}$
Từ giả thiết suy ra $a,b,c \ne 0$.
Ta có $\sum {\frac{{{a^6} + {b^6}}}{{{a^4} + {b^4} + {a^2}{b^2}}}} = \sum {({a^2} + {b^2}).\frac{{{a^4} - {a^2}{b^2} + {b^4}}}{{{a^4} + {a^2}{b^2} + {b^4}}}}$
Xét biểu thức $Q = \frac{{{x^4} - {x^2}{y^2} + {y^4}}}{{{x^4} + {x^2}{y^2} + {y^4}}}$
Chia tử và mẫu của $Q$ cho $y^4 \ne 0$ và đặt $t=\dfrac{x}{y}$, ta được $$Q = \frac{{{t^4} - {t^2} + 1}}{{{t^4} + {t^2} + 1}}=1-\dfrac{2t^2}{t^4+t^2+1}=f(t)$$
Khảo sát hàm $f(t)$, ta tìm được $\min{f(t)}=\dfrac{1}{3}$ (đạt được tại $t=\pm 1$,)
Từ đó ta có $Q \ge \dfrac{1}{3}, \forall x,y \ne 0$ (dấu đẳng thức xảy ra khi $x=\pm y$). Suy ra $$P = \sum {({a^2} + {b^2}).\frac{{{a^4} - {a^2}{b^2} + {b^4}}}{{{a^4} + {a^2}{b^2} + {b^4}}}} \ge \frac{2}{3}({a^2} + {b^2} + {c^2}) \ge \frac{2}{3}.3\sqrt[3]{{{a^2}{b^2}{c^2}}} = 4$$
Đẳng thức xảy ra khi $a=b=c=\sqrt{2}$
Vậy $\min{P}=4 \quad \blacksquare$


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Tìm giá trị nhỏ nhất của biểu thức mu8991 Bất đẳng thức - Cực trị 3 29-05-2016 01:03
Tìm giá trị lớn nhất của biểu thức $P={{a}^{4}}+{{b}^{4}}+{{c}^{4}}+3(ab+bc+ca)$. $N_B^N$ Bất đẳng thức - Cực trị 1 23-05-2016 08:48
Tìm giá trị nhỏ nhất của biểu thức $$P=a\left[\left(a^2+3\right)\dfrac{a+b}{c}+24\right]+b\left[\left(b^2+3\right)\dfrac{b+c}{a}+24\right]+c\left[\left(c^2+3\right)\dfrac{c+a}{b}+24\right]$$ Trần Quốc Việt Bất đẳng thức - Cực trị 1 04-05-2016 23:05
Tìm giá trị lớn nhất của biểu thức $P=\dfrac{\left(a-b \right)\left(b-c \right)\left(c-a \right)}{a^2+b^2+c^2}$ Trần Quốc Việt Bất đẳng thức - Cực trị 6 28-04-2016 14:41
Cho x, y, z $\in \left[0;2 \right]$ thoả mãn x +y +z =3. Tìm giá trị lớn nhất của biểu thức : P=$\frac{1}{x^{2}+y^{2}+2}+\frac{1}{y^{2}+z^{2}+2} +\frac{1}{z^{2}+x^{2}+2}+\sqrt{xy}+\sqrt{yz}+\sqrt {zx}$ kdn1999 Bất đẳng thức - Cực trị 0 27-04-2016 20:02



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014