Câu phương trình lượng giác (HSG Hải Phòng 2008-2009)
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN GIẢI TÍCH HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Lượng giác - Tổ hợp - Mũ & Logarit giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Lượng giác


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 28-09-2013, 11:15
Avatar của quynhanhbaby
quynhanhbaby quynhanhbaby đang ẩn
Cộng Tác Viên
Đến từ: Thanh Chương-Nghệ An
Nghề nghiệp: Giáo viên
 
Cấp bậc: 8 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 194
Điểm: 32 / 3601
Kinh nghiệm: 78%

Thành viên thứ: 54
 
Tham gia ngày: Jan 2012
Bài gửi: 96
Đã cảm ơn : 80
Được cảm ơn 156 lần trong 63 bài viết

Lượt xem bài này: 630
Mặc định Câu phương trình lượng giác (HSG Hải Phòng 2008-2009)

Cho phương trình: $\ (65sinx−56)(80−64sinx−65cos^2{x})$=0 (1)
Chứng minh rằng tồn tại 1 tam giác có các góc thoả mãn phương trình (1).


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 28-09-2013, 13:50
Avatar của NTH 52
NTH 52 NTH 52 đang ẩn
Bùi Đình Hiếu
Đến từ: VLPT, sedo
Nghề nghiệp: SV-smod-mod
Sở thích: Toán-Lí
 
Cấp bậc: 28 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 69 / 690
Điểm: 351 / 10599
Kinh nghiệm: 63%

Thành viên thứ: 4755
 
Tham gia ngày: Feb 2013
Bài gửi: 1.055
Đã cảm ơn : 287
Được cảm ơn 1.514 lần trong 605 bài viết

Mặc định Re: Câu phương trình lượng giác (HSG Hải Phòng 2008-2009)

Nguyên văn bởi quynhanhbaby Xem bài viết
Cho phương trình: $\ (65sinx−56)(80−64sinx−65cos^2{x})$=0 (1)
Chứng minh rằng tồn tại 1 tam giác có các góc thoả mãn phương trình (1).
Bài làm:
Từ phương trình trên ta có:
$$\sin x_1 = \dfrac{56}{65}; \sin x_2=\dfrac{3}{5}; \sin x_3 =\dfrac{5}{13}.$$
Ta có:
$$\sin x_1=\sin (x_2+x_3).$$
Ta thấy $x_1 \neq x_2+ x_3$
Như vậy chứng tỏ tồn tại 1 tam giác có các góc thỏa mãn phương trình (1).


MY FACEBOOK:https://www.facebook.com/hieu.buidinh.54
MY BLOG:http://hieubuidinh.blogspot.com
Cuốn sách mới nhất: Chinh phục bài tập Vật lý - Điện xoay chiều
Bìa sách: https://www.facebook.com/photo.php?f...type=1&theater
Trích đoạn: http://goo.gl/WNNkZi
Nhóm giải đáp thắc mắc liên quan tới cuốn sách: https://www.facebook.com/groups/1559972954254499/


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  NTH 52 
quynhanhbaby (01-10-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Có thể bạn quan tâm

LIÊN HỆ
Email:
p.kimchung@gmail.com

Tel: 0984.333.030

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho tam giác ABC có AB=2AC...Tìm tọa độ các đỉnh A,B,C. Maruko Chan Giải toán Hình giải tích phẳng Oxy 1 20-05-2016 20:17
Cho tam giác ABC vuông cân tại A. M(2;2) là trung điểm BC, N là điểm thuộc cạnh AB sao cho AB=4AN, biết phương trình đường CN: 4x+y-4=0. Tìm tọa độ các đỉnh của tam giác biết điểm C nằm trên trục hoàn xuanvy2005 Giải toán Hình giải tích phẳng Oxy 1 28-04-2016 15:27
Cho tam giác $ABC$, phân giác ngoài góc $B$ ...Tìm toạ độ các đỉnh thangk56btoanti Giải toán Hình giải tích phẳng Oxy 2 10-04-2016 14:41
Tuyển tập Hệ phương trình giải được bằng phương pháp đánh giá Phạm Kim Chung Tài liệu Hệ phương trình 92 05-01-2016 11:15
Cho tam giác ABC ...Điểm M(-4;1) thuộc cạnh AC.Viết pt đường thẳng AB tn24121997 Giải toán Hình giải tích phẳng Oxy 5 05-04-2015 22:37



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014