Đề thi chọn đội tuyển PTNK ĐHQG TPHCM ngày 2 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan ĐỀ THI HỌC SINH GIỎI MÔN TOÁN giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan ĐỀ THI OLYMPIC TOÁN

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 27-09-2013, 13:58
Avatar của phatthientai
phatthientai phatthientai đang ẩn
Thành viên Chính thức
Nghề nghiệp: Học sinh
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 658
Điểm: 315 / 9028
Kinh nghiệm: 35%

Thành viên thứ: 8227
 
Tham gia ngày: Apr 2013
Bài gửi: 946
Đã cảm ơn : 108
Được cảm ơn 265 lần trong 190 bài viết

Lượt xem bài này: 1460
Mặc định Đề thi chọn đội tuyển PTNK ĐHQG TPHCM ngày 2

ĐỀ THI CHỌN ĐỘI TUYỂN TOÁN TRƯỜNG PTNK - ĐHQGTPHCM
NĂM HỌC 2013-2014
Ngày thi thứ hai: 26/9/2013
Thời gian làm bài 180 phút, không kể thời gian phát đề


Bài 5. Cho $2014$ số thực $x_1,x_2,...,x_{2014}$ thỏa mãn điều kiện $\sum\limits_{i=1}^{2014}x_i=0$ và $\sum\limits_{i=1}^{2014}x_i^2=2014$.
Tìm giá trị lớn nhất của biểu thức $P=x_1x_2...x_{2014}$.

Bài 6. Cho dãy số $\{u_n \}$ xác định bởi: $u_1=1$, $u_{n+1}=\dfrac{u_n}{\sqrt{u_n^2+1}+\sqrt{2}}, \ \forall n\in\mathbb{N^*}$.
Tìm $\lim\dfrac{u_{n+1}}{u_n}$.

Bài 7. Cho $n$ là số nguyên dương và A là tập con khác rỗng của $X=\{1,2,...,n\}$.
Tính giá trị của tổng $S(A)=\sum\limits_{E\subset X}(-1)^{|E\cup A|}$, trong đó $E$ lấy trên tất cả các tập con của $X$ (kể cả tập rỗng).
Cho $m\in\mathbb{N^*}$, xét $m$ tập con khác rỗng của $X$ là $A_1,A_2,...,A_m$ và m số nguyên khác $0$ là $a_1,a_2,...,a_m$ sao cho $a_1+a_2+\cdots+a_m<0$. Chứng minh rằng tồn tại tập con $E$ của $X$ sao cho $\sum\limits_{E\subset X}(-1)^{|E\cup A|}a_i>0$.
(Ký hiệu $|A|$ chỉ số phần tử của tập hợp $A$, số phần tử của tập rỗng là 0).

Bài 8. Tam giác $ABC$ nhọn có trực tâm $H$ và $P$ là điểm di động bên trong tam giác $ABC$ sao cho $\angle BPC=\angle BHC$. Đường thẳng qua $B$ vuông góc với $AB$ cắt $PC$ tại $M$, đường thẳng qua $C$ vuông góc với $AC$ cắt $PB$ tại $N$. Chứng minh trung điểm $I$ của $MN$ luôn thuộc một đường thằng cố định.


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
(Oxy chọn lọc) TUYỂN TẬP 50 BÀI TOÁN OXY HAY VÀ KHÓ Phạm Kim Chung [Tài liệu] Hình giải tích Oxy 1 28-05-2016 18:38
Tuyển chọn các bài toán hình học phẳng Oxy qua đề thi thử THPT Quốc Gia Phạm Kim Chung [Tài liệu] Hình giải tích Oxy 0 25-05-2016 23:46
Bộ Giáo dục thay đổi phương thức xét tuyển đại học, cao đẳng FOR U Tin tức Giáo dục 24h 0 13-05-2016 09:47



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
đề thi hsg toán ptnk 2016, de chon doi tuyen truong ptnk tphc, thi hsg
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014