Cho $a,b,c>0$ thoả mãn $ab+bc+ca=1$. Chứng minh rằng : $a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b } \geq \frac{3\sqrt{3}}{2}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 27-09-2013, 13:48
Avatar của phatthientai
phatthientai phatthientai đang ẩn
Thành viên Chính thức
Nghề nghiệp: Học sinh
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 658
Điểm: 315 / 9027
Kinh nghiệm: 35%

Thành viên thứ: 8227
 
Tham gia ngày: Apr 2013
Bài gửi: 946
Đã cảm ơn : 108
Được cảm ơn 265 lần trong 190 bài viết

Lượt xem bài này: 415
Mặc định Cho $a,b,c>0$ thoả mãn $ab+bc+ca=1$. Chứng minh rằng : $a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b } \geq \frac{3\sqrt{3}}{2}$



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 14-10-2013, 22:29
Avatar của thái bình
thái bình thái bình đang ẩn
Libach80
Đến từ: THPT Thái Lão
Nghề nghiệp: Đánh trẻ
Sở thích: Làm học sinh
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 471
Điểm: 153 / 7124
Kinh nghiệm: 85%

Thành viên thứ: 838
 
Tham gia ngày: Oct 2012
Bài gửi: 459
Đã cảm ơn : 47
Được cảm ơn 500 lần trong 266 bài viết

Mặc định Re: Cho $a,b,c>0$ thoả mãn $ab+bc+ca=1$. Chứng minh rằng : $a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b } \geq \frac{3\sqrt{3}}{2}$

Nguyên văn bởi phatthientai Xem bài viết
Cho $a,b,c>0$ thoả mãn $ab+bc+ca=1$. Chứng minh rằng :

$$a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+ b} \geq \frac{3\sqrt{3}}{2}$$
HD. Ta có
$VT=\left(a+b+c \right)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{ c+a}\right)\geq \left(a+b+c \right)\frac{\left(a+b+c \right)^2}{\left(a+b+c \right)^2-1};t=a+b+c\Rightarrow t\geq \sqrt{3}$.
Xét $f\left(t \right)=\frac{t^3}{t^2-1};t\geq \sqrt{3}$


TOÁN HỌC LÀ ĐAM MÊ CỦA CUỘC ĐỜI


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 14-10-2013, 22:46
Avatar của Success Nguyễn
Success Nguyễn Success Nguyễn đang ẩn
Thành viên Chính thức
Đến từ: Hưng Nguyên
Nghề nghiệp: Học sinh
Sở thích: Real Madrid
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 308
Điểm: 68 / 4419
Kinh nghiệm: 32%

Thành viên thứ: 3124
 
Tham gia ngày: Jan 2013
Bài gửi: 204
Đã cảm ơn : 102
Được cảm ơn 157 lần trong 91 bài viết

Mặc định Re: Cho $a,b,c>0$ thoả mãn $ab+bc+ca=1$. Chứng minh rằng : $a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b } \geq \frac{3\sqrt{3}}{2}$

Nguyên văn bởi phatthientai Xem bài viết
Cho $a,b,c>0$ thoả mãn $ab+bc+ca=1$. Chứng minh rằng :

$$a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+ b} \geq \frac{3\sqrt{3}}{2}$$
$a+b+c+\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b } =\left(a+b+c \right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{ a+b} \right)$
Ta có $\left(a+b+c \right)^{2}\geq 3\left(ab+bc+ca \right)=3
\Rightarrow a+b+c \geq \sqrt{3}$ (1)
$\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} =\frac{a^{2}}{ba+ac}+\frac{b^{2}}{ab+bc}+\frac{c^{ 2}}{ac+cb}\geq \frac{\left(a+b+c \right)^{2}}{2\left(ab+bc+ca \right)}\geq \frac{3}{2}$ (2)
Từ (1);(2) ĐPCM


Dô Dô Là Anh Em Ta. We Are We Are We Sông Lam.


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực $a,b,c$. Chứng minh rằng: $\sum \frac{a^{2}+b^{2}}{(a-b)^{2}}\geq \frac{5}{2}$ pcfamily Đại số lớp 8 4 20-06-2016 22:22
Chứng minh rằng $x^2+y^2+\frac{3}{5}xy>1$ jupiterhn9x Bất đẳng thức - Cực trị 1 22-05-2016 13:41
Chứng minh rằng $\forall a\geq 1$ ta luôn có $\frac{1}{a^{x}}+\frac{1}{a^{y}}+\frac{1}{a^{z}}\g eq \frac{x}{a^{x}}+\frac{y}{a^{y}}+\frac{z}{a^{z}}$ youngahkim Bất đẳng thức - Cực trị 1 20-05-2016 13:44
Bài toán khó: Cho tam giác ABC co hai đường cao BE và CF cắt nhau tại H. EF cắt BC tại P, gọi M là trung điểm của BC. Chứng minh rằng PH vuông góc với AM. dobinh1111 Hình học phẳng 0 03-05-2016 12:41
Chứng minh rằng với mọi giá trị của m khác không thì phương trình sau luôn có nghiệm $$\frac{m}{{{x^2} - x}} + \frac{{{m^3} + m}}{{{x^2} - 4}} = \sqrt {{m^2} - m + 1} $$ hoangphilongpro Giới hạn hàm số - Giới hạn dãy số 0 28-04-2016 12:47



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
cho a b c >0. thoả mãn: ab bc ca =1.
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014