(Dùng phép biến hình) Cho hai đường tròn $(O1), (O2)$ có cùng bán kính và tiếp xúc nhau tại $C$. - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 11 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học 11 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Phép biến hình

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 18-09-2013, 01:54
Avatar của tuanson
tuanson tuanson đang ẩn
Thành viên Chính thức
 
Cấp bậc: 4 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 82
Điểm: 10 / 1140
Kinh nghiệm: 31%

Thành viên thứ: 7356
 
Tham gia ngày: Mar 2013
Bài gửi: 31
Đã cảm ơn : 20
Được cảm ơn 4 lần trong 3 bài viết

Lượt xem bài này: 982
Mặc định (Dùng phép biến hình) Cho hai đường tròn $(O1), (O2)$ có cùng bán kính và tiếp xúc nhau tại $C$.

(Dùng phép biến hình) Cho hai đường tròn $(O_1), (O_2)$ có cùng bán kính và tiếp xúc nhau tại $C$. Lấy $A$ thuộc $(O_1), B$ thuộc $(O_2)$ sao cho $ACB = 90$. Chứng minh: $AB$ có độ dài bằng dường kính đường tròn $(O_1), (O_2)$


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 18-09-2013, 22:21
Avatar của Trọng Nhạc
Trọng Nhạc Trọng Nhạc đang ẩn
Quản Lý Diễn Đàn
Đến từ: Cà Mau
Nghề nghiệp: thợ toán
Sở thích: yên lặng
 
Cấp bậc: 26 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 64 / 642
Điểm: 297 / 8683
Kinh nghiệm: 69%

Thành viên thứ: 9728
 
Tham gia ngày: Apr 2013
Bài gửi: 893
Đã cảm ơn : 971
Được cảm ơn 896 lần trong 483 bài viết

Mặc định Re: (Dùng phép biến hình) Cho hai đường tròn $(O1), (O2)$ có cùng bán kính và tiếp xúc nhau tại $C$.

Nguyên văn bởi tuanson Xem bài viết
(Dùng phép biến hình) Cho hai đường tròn $(O_1), (O_2)$ có cùng bán kính và tiếp xúc nhau tại $C$. Lấy $A$ thuộc $(O_1), B$ thuộc $(O_2)$ sao cho $ACB = 90$. Chứng minh: $AB$ có độ dài bằng dường kính đường tròn $(O_1), (O_2)$
Click the image to open in full size.

Chọn phép đối xứng tâm C thì đường tròn tâm I biến thành đường tròn tâm J
A,B,I lần lượt có ảnh là D,E,J ta thấy tứ giác ABDE là hình bình hành
lại có $AD\perp BE$ nên tứ giác ABDE là hình thoi
hiển nhiên AB bằng đường kính của đường tròn.




Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Trọng Nhạc 
tuanson (25-09-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho tam giác ABC vuông tại A có B(4;1), I là tâm đường tròn nội tiếp tam giác ABC, đường thẳng qua C vuông góc CI cắt đường tròn ngoại tiếp tam giác IBC tại K(7;7), biết C thuộc đường thẳng d: 3x-y+2=0 Harass Hình giải tích phẳng Oxy 0 28-05-2016 18:32
Cho tam giác $ABC$ không cân nội tiếp đường tròn tâm $I$ với các đường cao $AD,BE$.Biết $D\left(-\frac{1}{5};-\frac{2}{5} \right);E\left(2;2 \right);F(1;0)$ là hình chiếu của $B$ lên đường thẳng $AI$.Tìm toạ đ Đinh Xuân Hùng Hình giải tích phẳng Oxy 0 16-05-2016 11:49
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nhọn và nội tiếp đường tròn tâm I, các tiếp tuyến với đường tròn tại A và C cắt tiếp tuyến có tiếp điểm B tại các điểm tương ứng M(-4; Khanhduy Hình giải tích phẳng Oxy 0 14-05-2016 00:00
[Oxy] Cho tam giác nhọn ABC nội tiếp đường tròn tâm I...Biêt (AC):3x+2y-13=0.Tìm A Bùi Nguyễn Quyết Hình giải tích phẳng Oxy 5 13-05-2016 22:11
Bài toán hay: Cho tam giác ABC nội tiếp đường tròn tâm O, có hai đường cao BE và CF cắt nhau tại H(5;5). EF cắt BC tại P(8;0). M(9/2;7/2). Tìm tọa độ các đỉnh của tam giác ABC. (Liệu có thể chứng minh PH dobinh1111 Hình giải tích phẳng Oxy 0 03-05-2016 12:44



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014