Viết phương trình các cạnh trong tam giác biết trực tâm $H$, tâm đường tròn nội tiếp $I$ và đường thẳng $BC$. - Trang 2
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Hình học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Hình giải tích phẳng Oxy


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #5  
Cũ 13-07-2013, 23:02
Avatar của hungchng
hungchng hungchng đang ẩn
Hỗ trợ LaTex
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 660
Điểm: 317 / 11506
Kinh nghiệm: 42%

Thành viên thứ: 799
 
Tham gia ngày: Oct 2012
Bài gửi: 952
Đã cảm ơn : 28
Được cảm ơn 2.675 lần trong 698 bài viết

Mặc định

Nguyên văn bởi trdkh Xem bài viết
Cho tam giác ABC có trực tâm H(1;1), tâm đường tròn nội tiếp là I(3;2)và đường thẳng BC có phương trình $y=-1$.Viết phương trình các cạnh AB,AC
Bổ sung cái hình cho dễ trình bày lời giải.


Gọi $K$ là hình chiếu vuông góc của $I$ lên $BC$ ta tìm được $K(3;-1)$.
Đường cao $AH$ vuông góc $BC$ nên có phương trình $x=1$.
$B\in BC \implies B(b;-1)$ và $C\in BC \implies C(c;-1)$ giả sử $b<3<c$
$A\in AH \implies A(1;a),\quad a>2$.
$BH\perp AC \iff (1-b)(c-1)-2(a+1)=0\iff c+b-bc-1=2(a+1)$
$CH\perp AB \iff (1-c)(b-1)-2(a+1)=0\iff c+b-bc-1=2(a+1)\quad(1)$
mà $AB$ có phương trình $(a+1)(x-1)+(b-1)(y-a)=0\iff (a+1)x+(b-1)y-1-ab=0$
và $AC$ có phương trình $(a+1)(x-1)+(c-1)(y-a)=0\iff (a+1)x+(c-1)y-1-ac=0$
$d(I,AB)=IK\iff \dfrac{|(a+1)3+(b-1)2-1-ab|}{\sqrt{(a+1)^2+(b-1)^2}}=3\iff|3a+2b-ab|=3\sqrt{(a+1)^2+(b-1)^2}\quad(2)$
$d(I,AC)=IK\iff \dfrac{|(a+1)3+(c-1)2-1-ac|}{\sqrt{(a+1)^2+(c-1)^2}}=3\iff|3a+2c-ac|=3\sqrt{(a+1)^2+(c-1)^2}\quad(3)$
Giải $(1), (2), (3)$ …………



Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  hungchng 
Hà Nguyễn (14-07-2013)
  #6  
Cũ 05-02-2014, 17:59
Avatar của hieuhha
hieuhha hieuhha đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 0
Điểm: 0 / 0
Kinh nghiệm: 0%

Thành viên thứ: 17877
 
Tham gia ngày: Dec 2013
Bài gửi: 1
Đã cảm ơn : 1
Được cảm ơn 0 lần trong 0 bài viết

Mặc định Re: Viết phương trình các cạnh trong tam giác biết trực tâm $H$, tâm đường tròn nội tiếp $I$ và đường thẳng $BC$.

làm sao mà tìm được B bằng cách này??


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Có thể bạn quan tâm

LIÊN HỆ
Email:
p.kimchung@gmail.com

Tel: 0984.333.030

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho tam giác ABC vuông tại A có B(4;1), I là tâm đường tròn nội tiếp tam giác ABC, đường thẳng qua C vuông góc CI cắt đường tròn ngoại tiếp tam giác IBC tại K(7;7), biết C thuộc đường thẳng d: 3x-y+2=0 Harass Giải toán Hình giải tích phẳng Oxy 0 28-05-2016 18:32
Cho tam giác ABC có AB=2AC...Tìm tọa độ các đỉnh A,B,C. Maruko Chan Giải toán Hình giải tích phẳng Oxy 1 20-05-2016 20:17
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nhọn và nội tiếp đường tròn tâm I, các tiếp tuyến với đường tròn tại A và C cắt tiếp tuyến có tiếp điểm B tại các điểm tương ứng M(-4; Khanhduy Giải toán Hình giải tích phẳng Oxy 0 14-05-2016 00:00
[Oxy] Cho hình thang ABCD vuông tại A và D ...Viết phương trình đường thẳng AD biết AD không song song với các trục tọa độ loanphuongtit Giải toán Hình giải tích phẳng Oxy 4 13-04-2015 17:38
Cho tam giác ABC ...Điểm M(-4;1) thuộc cạnh AC.Viết pt đường thẳng AB tn24121997 Giải toán Hình giải tích phẳng Oxy 5 05-04-2015 22:37



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$bc$, $h$, $i$, đường, biết, các, cạnh, giác, nội, phương, tam, tâm, thẳng, tiếp, trình, tròn, trực, trong, , viết
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014