Cho x,y,z >0 thoả $x^{3}+y^{3}+z^{3}=1$ Chứng minh rằng $\frac{x^{2}}{\sqrt{1-x^{2}}}+\frac{y^{2}}{\sqrt{1-y^{2}}}+\frac{z^{2}}{\sqrt{1-z^{2}}}\geq 2$

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 13-04-2013, 23:12
Avatar của bebeobeo
bebeobeo bebeobeo đang ẩn
Thành viên Chính thức
Đến từ: trên núi có nhiều sương muối
 
Cấp bậc: 8 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 198
Điểm: 33 / 3315
Kinh nghiệm: 94%

Thành viên thứ: 7593
 
Tham gia ngày: Mar 2013
Bài gửi: 99
Đã cảm ơn : 96
Được cảm ơn 49 lần trong 35 bài viết

Lượt xem bài này: 799
Cool Cho x,y,z >0 thoả $x^{3}+y^{3}+z^{3}=1$ Chứng minh rằng $\frac{x^{2}}{\sqrt{1-x^{2}}}+\frac{y^{2}}{\sqrt{1-y^{2}}}+\frac{z^{2}}{\sqrt{1-z^{2}}}\geq 2$

Cho x,y,z >0 thoả $x^{3}+y^{3}+z^{3}=1$
Chứng minh rằng $\frac{x^{2}}{\sqrt{1-x^{2}}}+\frac{y^{2}}{\sqrt{1-y^{2}}}+\frac{z^{2}}{\sqrt{1-z^{2}}}\geq 2$


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 15-06-2014, 01:26
Avatar của Em yêu Chị
Em yêu Chị Em yêu Chị đang ẩn
Thành viên Chính thức
Đến từ: Việt Nam
Nghề nghiệp: Học
Sở thích: Cho đi !
 
Cấp bậc: 5 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 112
Điểm: 15 / 1607
Kinh nghiệm: 51%

Thành viên thứ: 19260
 
Tham gia ngày: Feb 2014
Bài gửi: 45
Đã cảm ơn : 48
Được cảm ơn 7 lần trong 6 bài viết

Mặc định Re: Cho x,y,z >0 thoả $x^{3}+y^{3}+z^{3}=1$ Chứng minh rằng $\frac{x^{2}}{\sqrt{1-x^{2}}}+\frac{y^{2}}{\sqrt{1-y^{2}}}+\frac{z^{2}}{\sqrt{1-z^{2}}}\geq 2$

Do x, y, z>0. Nên
VT tương đương :
$\frac{x^{3}}{x\sqrt{1-x^{2}}}+\frac{y^{3}}{y\sqrt{1-y^{2}}}+\frac{z^{3}}{z\sqrt{1-z^{2}}}$
Áp dụng bất đẳng thức cô-si ta có :
$x\sqrt{1-x^{2}}\leq \frac{x^{2}+1-x^{2}}{2}=\frac{1}{2} $
$y\sqrt{1-y^{2}}\leq \frac{y^{2}+1-y^{2}}{2}=\frac{1}{2}$
$z\sqrt{1-z^{2}}\leq \frac{z^{2}+1-z^{2}}{2}=\frac{1}{2}$
$\Rightarrow \frac{x^{3}}{x\sqrt{1-x^{2}}}+\frac{y^{3}}{y\sqrt{1-y^{2}}}+\frac{z^{3}}{z\sqrt{1-z^{2}}}\geq 2(x^{3}+y^{3}+z^{3})=2$
Suy ra điều phải chứng minh.
Dấu "=" xảy ra khi và chỉ khi :
$x=y=z=\frac{1}{\sqrt[3]{3}}$




Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$fracx2sqrt1x2, $x3, &gt0, >0, 2$, chứng, cho, fracy2sqrt1y2, fracz2sqrt1z2geq, minh, rằng, thoả, y3, z31$
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên