Hình chữ nhât $ABCD$, có tâm $O$ là gốc tọa độ, $M(1;1)$ thuộc $AB$, $N(0;4) thuộc $BC$, $cosBAC = \frac{2{\sqrt{5. Tìm A, B, C, D

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 10 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học 10 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Toạ độ trong mặt phẳng


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 04-04-2013, 15:51
Avatar của maixuanhang
maixuanhang maixuanhang đang ẩn
Thành viên Danh dự
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 321
Điểm: 73 / 5409
Kinh nghiệm: 85%

Thành viên thứ: 3249
 
Tham gia ngày: Jan 2013
Bài gửi: 220
Đã cảm ơn : 132
Được cảm ơn 60 lần trong 42 bài viết

Lượt xem bài này: 1682
Mặc định Hình chữ nhât $ABCD$, có tâm $O$ là gốc tọa độ, $M(1;1)$ thuộc $AB$, $N(0;4)$ thuộc $BC$, $cosBAC = \frac{2}{\sqrt{5}}$. Tìm $A, B, C, D$

Hình chữ nhât $ABCD$, có tâm $O$ là gốc tọa độ, $M(1;1)$ thuộc $AB$, $N(0;4)$ thuộc $BC$, $cosBAC = \frac{2}{\sqrt{5}}$. Tìm $A, B, C, D$


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 02-07-2013, 12:16
Avatar của tutuhtoi
tutuhtoi tutuhtoi đang ẩn
Thành viên Chính thức
 
Cấp bậc: 15 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 362
Điểm: 91 / 5951
Kinh nghiệm: 51%

Thành viên thứ: 6154
 
Tham gia ngày: Mar 2013
Bài gửi: 275
Đã cảm ơn : 132
Được cảm ơn 320 lần trong 138 bài viết

Mặc định

Nguyên văn bởi maixuanhang Xem bài viết
Hình chữ nhât $ABCD$, có tâm $O$ là gốc tọa độ, $M(1;1)$ thuộc $AB$, $N(0;4)$ thuộc $BC$, $cosBAC = \frac{2}{\sqrt{5}}$. Tìm $A, B, C, D$
Mình xin nêu ý tưởng:
- Gọi $AB=x$
- Xét tam giác vuông BAC có $\cos \widehat{BAC}=\frac{AB}{AC}$ nên $AC=\frac{x\sqrt{5}}{2}$ và suy ra $BC=\frac{x}{2}$.
- Gọi (a,b) VTPT của AB. Do AB đi qua M nên phương trình AB là: $a(x-1)+b(y-1)=0$.
- Do BC đi qua N và vuông góc với Ab nên phương trình BC là: $b(x-0)-a(y-4)=0$.
- Ta có $AB=2BC$ nên $d(O,BC)=2d(O,AB)$. Dùng công thức tình khoảng cách ta suy ra mối quan hệ $a,b$. Sau đó chọn $a,b$. Tiếp theo là OK.


Phía cuối con đường
What will be will be.


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$ab$, $abcd$, $bc$, $cosbac, $m11$, $n04, $o$, độ, , ch, chữ, c�m, frac2sqrt5, gốc, hình, hnh, �11$, , l�c, nhât, nh�$abcd$, ta, tâm, tìm, tọa, thuộc, thuc, tm
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên