Chứng minh BĐT : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 20-04-2016, 21:52
Avatar của duyanh175
duyanh175 duyanh175 đang ẩn
Chiếc lá cuối cùng
 
Cấp bậc: 23 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 552
Điểm: 213 / 8556
Kinh nghiệm: 9%

Thành viên thứ: 14906
 
Tham gia ngày: Jul 2013
Bài gửi: 640
Đã cảm ơn : 488
Được cảm ơn 1.028 lần trong 463 bài viết

Lượt xem bài này: 2040
Mặc định Chứng minh BĐT : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$

Cho $a,b,c$ là ba số thực dương . Chứng minh : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  duyanh175 
Lê Đình Mẫn (24-04-2016)
  #2  
Cũ 21-04-2016, 19:35
Avatar của Đặng Thành Nam
Đặng Thành Nam Đặng Thành Nam đang ẩn
Quản Lý Diễn Đàn
Đến từ: Phú Thọ
 
Cấp bậc: 26 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 628
Điểm: 283 / 10903
Kinh nghiệm: 13%

Thành viên thứ: 1209
 
Tham gia ngày: Nov 2012
Bài gửi: 850
Đã cảm ơn : 515
Được cảm ơn 1.463 lần trong 525 bài viết

Mặc định Re: Chứng minh BĐT : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$

Nguyên văn bởi duyanh175 Xem bài viết
Cho $a,b,c$ là ba số thực dương . Chứng minh : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$
Em có giải ở đây: http://vted.vn/tin-tuc/hoc-bat-dang-...-nam-1071.html


Giáo viên Toán tại website vted.vn - Học toán online chất lượng cao!
Chi tiết các khoá học các bạn xem tại link: http://vted.vn/khoa-hoc.html


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 4 người đã cảm ơn cho bài viết này
duyanh175 (21-04-2016), Hiếu Titus (21-04-2016), Lê Đình Mẫn (24-04-2016), Man of Steel. (24-04-2016)
  #3  
Cũ 22-04-2016, 09:52
Avatar của Quốc Thắng
Quốc Thắng Quốc Thắng đang ẩn
materazzi
Đến từ: TP. HCM
Nghề nghiệp: Xe ôm
 
Cấp bậc: 10 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 232
Điểm: 42 / 3123
Kinh nghiệm: 31%

Thành viên thứ: 22030
 
Tham gia ngày: Mar 2014
Bài gửi: 127
Đã cảm ơn : 74
Được cảm ơn 244 lần trong 91 bài viết

Mặc định Re: Chứng minh BĐT : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$

Nguyên văn bởi duyanh175 Xem bài viết
Cho $a,b,c$ là ba số thực dương . Chứng minh : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$
Đặt
$$ P = \left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right) - 1-\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2} $$
Ta thấy
$$ P = \left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right) - 1-\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2} $$
$$ = \left( \left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right) -9 \right) - \left( \frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2} -8 \right) $$
$$ = \left( \frac{ \left( a-b \right)^2}{ab} + \frac{ \left( b-c \right)^2}{bc} + \frac{ \left( c-a \right)^2}{ca} \right) - 8 \left( \frac{ \left( a-b \right)^2 + \left( b-c \right)^2 + \left( c-a \right)^2}{\left( a+b+c \right)^2} \right)$$
$$ = \frac{ \sum c \left( a-b \right)^2 \left( \left( a+b+c \right)^2 -8ab\right)}{abc \left( a+b+c \right)^2} $$
Đặt
$$ Q = \sum c \left( a-b \right)^2 \left( \left( a+b+c \right)^2 -8ab\right)$$
Dễ thấy ta luôn có
$$ \sum c \left( a-b \right)^2 \left( a-c \right) \left( b-c \right) =0 $$
Như vậy
$$ Q =\sum c \left( a-b \right)^2 \left( \left( a+b+c \right)^2 -8ab\right) + 8 \sum c \left( a-b \right)^2 \left( a-c \right) \left( b-c \right) $$
$$ = \sum c \left( a-b \right)^2 \cdot \left( \left( a+b+c \right)^2 -8ab +8 \left( a-c \right) \left( b-c \right) \right) $$
$$ = \sum c \left( a-b \right)^2 \cdot \left( a+b-3c \right)^2 $$
Tóm lại, ta có
$$ \left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right) - 1-\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2} = \frac{\sum c \left( a-b \right)^2 \cdot \left( a+b-3c \right)^2}{abc \left( a+b+c \right)^2} \ge 0 $$


Con về chẳng thấy mẹ đâu
Nắng vàng mẹ chẳng gội đầu bên sân
Ngoài kia hoa nở thật gần
Ngó vào khe cửa thì thầm: Mẹ ơi!…


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 4 người đã cảm ơn cho bài viết này
duyanh175 (22-04-2016), Lê Đình Mẫn (23-04-2016), Man of Steel. (22-04-2016), thinhtdz86 (25-07-2016)
  #4  
Cũ 24-04-2016, 13:46
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 15707
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.191 lần trong 1.384 bài viết

Mặc định Re: Chứng minh BĐT : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$

Nguyên văn bởi duyanh175 Xem bài viết
Cho $a,b,c$ là ba số thực dương . Chứng minh : $$\left(a+b+c \right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right)\geq 1+\frac{24\left(a^2+b^2+c^2 \right)}{\left(a+b+c \right)^2}$$
Xử đẹp bài này nhé:

Bằng cách này xử luôn bài này nữa http://k2pi.net.vn/showthread.php?t=27397


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
duyanh175 (27-04-2016), Man of Steel. (24-04-2016)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên