Tìm m đẻ hàm số có cực trị và $y_{CĐ}^2 + y_{CT}^2 > \dfrac{1}{2}$.

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số & Giải tích 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Khảo sát hàm số


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 24-06-2013, 01:59
Avatar của 200dong
200dong 200dong đang ẩn
Thành viên Chính thức
Đến từ: $1/2_{♥}$ of you
Nghề nghiệp: XAD
Sở thích: Dốt toán =))
 
Cấp bậc: 9 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 207
Điểm: 35 / 3345
Kinh nghiệm: 30%

Thành viên thứ: 9288
 
Tham gia ngày: Apr 2013
Bài gửi: 106
Đã cảm ơn : 60
Được cảm ơn 13 lần trong 11 bài viết

Lượt xem bài này: 1293
Mặc định Tìm m đẻ hàm số có cực trị và $y_{CĐ}^2 + y_{CT}^2 > \dfrac{1}{2}$.

Cho hàm số: $y = \dfrac{x^2 +(m+2)x + 3m + 2}{x +2}$

Tìm m đẻ hàm số có cực trị và $y_{CĐ}^2 + y_{CT}^2 > \dfrac{1}{2}$.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 24-06-2013, 11:57
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 651
Điểm: 307 / 11001
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định

Bạn nói rõ cái này là thế nào: $$y^2 max + y^2 min > \dfrac{1}{2}$$


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Mai Tuấn Long 
200dong (24-06-2013)
  #3  
Cũ 24-06-2013, 17:04
Avatar của 200dong
200dong 200dong đang ẩn
Thành viên Chính thức
Đến từ: $1/2_{♥}$ of you
Nghề nghiệp: XAD
Sở thích: Dốt toán =))
 
Cấp bậc: 9 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 207
Điểm: 35 / 3345
Kinh nghiệm: 30%

Thành viên thứ: 9288
 
Tham gia ngày: Apr 2013
Bài gửi: 106
Đã cảm ơn : 60
Được cảm ơn 13 lần trong 11 bài viết

Mặc định

Nguyên văn bởi Mai Tuấn Long Xem bài viết
Bạn nói rõ cái này là thế nào: $$y^2 max + y^2 min > \dfrac{1}{2}$$
Tức là $y_1^2 + y_2^2 > \dfrac{1}{2}$ (y1, y2 là tung độ của các điểm cực trị).

Bài này mình làm ra rồi nhưng khác đáp án nên thấy lo lo. Giúp mình với.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 24-06-2013, 22:29
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 651
Điểm: 307 / 11001
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định

Nguyên văn bởi 200dong Xem bài viết
Tức là $y_1^2 + y_2^2 > \dfrac{1}{2}$ (y1, y2 là tung độ của các điểm cực trị).

Bài này mình làm ra rồi nhưng khác đáp án nên thấy lo lo. Giúp mình với.
Vậy phải sửa là: $y_{CĐ}^2 + y_{CT}^2 > \dfrac{1}{2}$


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$y2, $ycĐ2, &gt, >, đẻ, , cực, dfrac12$, hàm, max, min, số, tìm, trị, , y2, yct2
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên