Câu 9b Đề thi thử số 9 diễn đàn www.k2pi.net

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Giải tích luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Tổ hợp - Xác suất giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Nhị thức Newton


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 22-02-2014, 21:25
Avatar của Hà Nguyễn
Hà Nguyễn Hà Nguyễn đang ẩn
Những Đêm Lặng Câm :)
 
Cấp bậc: 23 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 563
Điểm: 223 / 10031
Kinh nghiệm: 55%

Thành viên thứ: 858
 
Tham gia ngày: Oct 2012
Bài gửi: 669
Đã cảm ơn : 3.234
Được cảm ơn 1.352 lần trong 441 bài viết

Lượt xem bài này: 1039
Mặc định Câu 9b Đề thi thử số 9 diễn đàn www.k2pi.net

Câu 9b (1 điểm) Tìm hệ số lớn nhất trong khai triển Nhị thức Newton $\left(x + 2 \right)^{n} $ biết $n$ là số nguyên dương thỏa mãn điều kiện : $\frac{2013}{2}.C_{n}^{1} = C_{n}^{2}$


Không đủ đẹp để ai cũng phải yêu
Không đủ cao để nổi bật giữa mọi người
Chẳng đủ ngọt ngào làm siêu lòng người khác
Nhưng đủ tự tin để yêu bằng trái tim !. :)


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 23-02-2014, 00:35
Avatar của tien.vuviet
tien.vuviet tien.vuviet đang ẩn
Quản Lý Diễn Đàn
Nghề nghiệp: Ăn mày
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 545
Điểm: 207 / 9530
Kinh nghiệm: 82%

Thành viên thứ: 1375
 
Tham gia ngày: Nov 2012
Bài gửi: 623
Đã cảm ơn : 88
Được cảm ơn 622 lần trong 330 bài viết

Mặc định Re: Câu 9b Đề thi thử số 9 diễn đàn www.k2pi.net

Vắn tắt

Dễ tính được $n=2014$, khai triển là $(x+2)^{2014}$

SHTQ $T_{k+1} =C_{2014}^k x^{2014-k} .2^k$

Để $2^k C_{2014}^k$ là hệ số $\max $ thì

$\begin{cases} 2^k C_{2014}^k \ge 2^{k-1} C_{2014}^{k-1} \\ 2^k C_{2014}^k \ge 2^{k+1} C_{2014}^{k+1} \end{cases} \Leftrightarrow \dfrac{4027}{3} \le k \le \dfrac{4030}{3}$

$\Rightarrow k = 1343$


$LOVE (x) \bigg |_{x=e}^{\Omega} =+\infty$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  tien.vuviet 
ngonnentruocgio (23-02-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên