Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014 - Trang 72
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #285  
Cũ 24-12-2013, 00:20
Avatar của Shirunai Okami
Shirunai Okami Shirunai Okami đang ẩn
$\Huge\mathfrak{POPEYE}$
Đến từ: HNUE
Nghề nghiệp: Tháo Giầy
Sở thích: Shingeki no Kyojin
 
Cấp bậc: 21 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 510
Điểm: 180 / 7506
Kinh nghiệm: 41%

Thành viên thứ: 15713
 
Tham gia ngày: Aug 2013
Bài gửi: 541
Đã cảm ơn : 336
Được cảm ơn 907 lần trong 296 bài viết

Mặc định Re: Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014

Bài 129 Cho $a,b,c$ là các số thực dương thỏa $abc=1$. Tìm GTNN của biểu thức
\[P=(a+b)(b+c)(c+a)+\frac{72}{\sqrt{a+b+c+1}}\]



Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Shirunai Okami 
Miền cát trắng (24-12-2013)
  #286  
Cũ 24-12-2013, 12:06
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 15227
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.190 lần trong 1.383 bài viết

Mặc định Re: Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014

Nguyên văn bởi Popeye Xem bài viết
Bài 129 Cho $a,b,c$ là các số thực dương thỏa $abc=1$. Tìm GTNN của biểu thức
\[P=(a+b)(b+c)(c+a)+\frac{72}{\sqrt{a+b+c+1}}\]
Hướng dẫn:

Với chú ý:
$\begin{aligned}(a+b)(b+c)(c+a)&=(a+b+c)(ab+bc+ca)-abc\\
&\ge (a+b+c)(ab+bc+ca)- \dfrac{1}{9}(a+b+c)(ab+bc+ca)\\
\iff (a+b)(b+c)(c+a)&\ge \dfrac{8}{9}(a+b+c)(ab+bc+ca)\end{aligned}$
và $ab+bc+ca\ge \sqrt{3abc(a+b+c)}$. Ta có
\[P\ge \dfrac{8}{9}(a+b+c)\sqrt{3(a+b+c)}+ \dfrac{72}{\sqrt{a+b+c+1}}\ge 44\]


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 5 người đã cảm ơn cho bài viết này
OoMưaOo (24-12-2013), hbtoanag (31-12-2013), ma29 (24-12-2013), Miền cát trắng (24-12-2013), Shirunai Okami (24-12-2013)
  #287  
Cũ 24-12-2013, 20:23
Avatar của phatthientai
phatthientai phatthientai đang ẩn
Thành viên Chính thức
Nghề nghiệp: Học sinh
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 658
Điểm: 315 / 10320
Kinh nghiệm: 35%

Thành viên thứ: 8227
 
Tham gia ngày: Apr 2013
Bài gửi: 946
Đã cảm ơn : 108
Được cảm ơn 265 lần trong 190 bài viết

Mặc định Re: Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014

Bài 132 Cho $x,y,z$ thỏa ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy\le 2\left( x+y+z \right)$
Tìm min $$P={{x}^{2}}+{{y}^{2}}+2z+\frac{40}{\sqrt{y+z+1}} +\frac{40}{\sqrt{x+3}}$$


Báo cáo bài viết xấu Trả lời với trích dẫn
  #288  
Cũ 25-12-2013, 14:34
Avatar của ghost
ghost ghost đang ẩn
Thành viên Chính thức
 
Cấp bậc: 2 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 25
Điểm: 3 / 368
Kinh nghiệm: 0%

Thành viên thứ: 15545
 
Tham gia ngày: Jul 2013
Bài gửi: 10
Đã cảm ơn : 9
Được cảm ơn 9 lần trong 6 bài viết

Mặc định Re: Topic BẤT ĐẲNG THỨC LUYỆN THI ĐẠI HỌC 2014

Nguyên văn bởi phatthientai Xem bài viết
Bài 132 Cho $x,y,z$ thỏa ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xy\le 2\left( x+y+z \right)$
Tìm min $$P={{x}^{2}}+{{y}^{2}}+2z+\frac{40}{\sqrt{y+z+1}} +\frac{40}{\sqrt{x+3}}$$
Từ điều kiện ta có $(x+y)^2+z^2\leq2(x+y+z)$ mặt khác $(x+y)^2+z^2\geq\frac{(x+y+z)^2}{2}$ suy ra $x+y+z\leq4$
$$P+2=x^2+1+y^2+1+2z+\frac{40}{\sqrt{y+z+1}}+\frac {40}{\sqrt{x+3}}$$
$\geq2(x+y+z)+\frac{40}{\sqrt{y+z+1}}+\frac{40}{ \sqrt{x+3}}$
Ta có$\frac{5(x+3)}{2}+\frac{20}{\sqrt{x+3}}+\frac{2 0}{\sqrt{x+3}}\geq30$
$\frac{5(y+z+1)}{2}+\frac{20}{\sqrt{y+z+1}}+\frac{ 20}{\sqrt{y+z+1}}\geq30$
Suy ra$ P+2+\frac{x+y+z+20}{2}\geq60$,suy ra $P\geq60-2-\frac{x+y+z+20}{2}\geq60-2-12=46$.Vậy MinP=46 khi $x=y=1,z=2$


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
ma29 (25-12-2013), N H Tu prince (26-12-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Có thể bạn quan tâm

LIÊN HỆ
Email:
p.kimchung@gmail.com

Tel: 0984.333.030

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Tài Liệu Chọn lọc một số bài Bất Đẳng Thức từ diễn đàn K2pi Trần Quốc Việt Tài liệu Bất đẳng thức 1 27-05-2016 13:21
Bất đẳng thức cực trị Trangsf Bất đẳng thức - Cực trị 1 23-05-2016 01:09
Bộ Giáo dục thay đổi phương thức xét tuyển đại học, cao đẳng FOR U Tin tức Giáo dục 24h 0 13-05-2016 09:47
SPHN lần 3;Với các số thục dương $x,y$. Chứng minh bất đẳng thức: $\frac{1}{x+y+1}-\frac{1}{\left( x+1 \right)\left( y+1 \right)}<\frac{1}{11}$ catbuilata Bất đẳng thức - Cực trị 0 21-04-2016 13:13
Sử dụng bất đẳng thức để giải bất phương trình hthtb22 Tài liệu Phương trình-BPT vô tỷ 4 10-04-2016 09:11



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
3abc- 2014a-b-c, Ôn thi cùng các cao thủ bđt-facebook, bat dang thuc, bat dang thuc nao se thi 2014, bất đẳng thức luyện thi đại học 2014, bất đẳng thức thi 2014, bất đẳng thức thi đại học, các bất đẳng thức thi đại học, cho a b c >0 v* (a b c)^3= 32abc tìm, chuyên đề bất đăng thức ôn đại học 2014, imo 2006 bat dang thuc, phương pháp gọi số hạng vắng, tim gtnn p=3abc-2014a, tim min p=3abc-2014, tim min p=3abc-2014a, timf min p = xy yz zt tx, toan luyen tp chung trang52, topic bat dang thuc luyen thi dai hoc 2014 k2pi, topic bất đẳng thức luyện thi đh 2014 k2pi, topic luyen thi dai hoc 2014 k2pi, toppic bat dang thuc, xy yz zt tx=1 tim gtnn, xy yz zx = 1 tìm gtnn p=x^2 my^2 nz^2
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014