[TOPIC] Các Bài Toán Trong Tam Giác - Trang 5
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN HÌNH HỌC HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học phẳng


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #17  
Cũ 17-03-2015, 16:28
Avatar của Quân Sư
Quân Sư Quân Sư đang ẩn
Quản Lý Diễn Đàn
Đến từ: Hà Tĩnh
Nghề nghiệp: Software Engineering
Sở thích: Lặng Lẽ
 
Cấp bậc: 33 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 81 / 811
Điểm: 515 / 10034
Kinh nghiệm: 44%

Thành viên thứ: 20436
 
Tham gia ngày: Feb 2014
Bài gửi: 1.547
Đã cảm ơn : 503
Được cảm ơn 1.246 lần trong 754 bài viết

Mặc định Re: [TOPIC] Các Bài Toán Trong Tam Giác

Bài 13:Cho $\Delta ABC$ không tù thỏa mãn $A \ge B \ge C$.Tính các góc của tam giác $ABC$ biết biểu thức sau đạt giá trị lớn nhất:
$$P=\cos A+\cos B+\cos C-2\sin A \sin B$$


Nguyễn Minh Đức - ĐH FPT


Báo cáo bài viết xấu Trả lời với trích dẫn
  #18  
Cũ 17-03-2015, 21:00
Avatar của Forgive Yourself
Forgive Yourself Forgive Yourself đang ẩn
Thành viên Chính thức
Đến từ: Hà Tĩnh
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 164
Điểm: 25 / 1648
Kinh nghiệm: 59%

Thành viên thứ: 40132
 
Tham gia ngày: Dec 2014
Bài gửi: 75
Đã cảm ơn : 87
Được cảm ơn 28 lần trong 18 bài viết

Mặc định Re: [TOPIC] Chuyên Đề Nhận Dạng Tam Giác

Nguyên văn bởi caotientrung Xem bài viết
Bài 7: ( Khá hay) Cho tam giác ABC chân đường cao lần lượt là A';B';C'. Nhận dạng tam giác ABC biết $S_{A'B'C'}=\frac{1}{4}S_{ABC}$
Đặt $S=S_{ABC}, S_1=S_{AB'C'}, S_2=S_{BA'C'}, S_3=S_{CA'B'}$

Ta cần chứng minh $S_1+S_2+S_3\geq \frac{3S}{4}\Leftrightarrow \frac{S_1}{S}+\frac{S_2}{S}+\frac{S_3}{S}\geq \frac{3}{4}$ ($*$)

Ta có:

$\frac{S_1}{S}=\frac{\frac{1}{2}AC'.AB'sinA}{\frac {1}{2}bcsinA}=\frac{bcosA.c.cosA}{bc}=cos^2A$

Tương tự ta có: $\frac{S_2}{S}=cos^2B$, $\frac{S_3}{S}=cos^2C$

Suy ra $VT(*)=cos^2A+cos^2B+cos^2C$

Dễ dàng chứng minh được $cos^2A+cos^2B+cos^2C\geq \frac{3}{4}$

$\Rightarrow$ đpcm

Dấu "$=$" xảy ra khi và chỉ khi $\Delta ABC$ đều./


Nguyên văn bởi Nguyễn Minh Đức Xem bài viết
Cho $\Delta ABC$ không tù thỏa mãn $A \ge B \ge C$.Tính các góc của tam giác $ABC$ biết biểu thức sau đạt giá trị lớn nhất:
$$P=\cos A+\cos B+\cos C-2\sin A \sin B$$
Ta có:

$P=cosA+cosB+cosC-2sinAsinB=cosA+cosB+cosC+cos(A+B)-cos(A-B)=cosA+cosB-cos(A-B)$

Ta lại có từ giả thiết ta được $0<C\leq B\leq A\leq \frac{\pi}{2}$

Do đó:

$cos(A-B)=\frac{sin2A+sin2B}{2sin(A+B)}=\frac{sin2A}{2sin C}+\frac{sin2B}{2sinC}=\frac{sinA}{sinC}cosA+\frac {sinB}{sinC}cosB$

Mà từ $0<C\leq B\leq A\leq \frac{\pi}{2}$ suy ra $\frac{sinA}{sinC}\geq 1,\frac{sinB}{sinC}\geq 1,cosA\geq 0,cosB>0$

Vì vậy $cos(A-B)\geq cosA+cosB\Rightarrow P\leq 0$

Đẳng thức xảy ra khi và chỉ khi

$\left\{\begin{matrix}
cosA=0\\
\frac{sinB}{sinC}=1
\end{matrix}\right.$ v $\left\{\begin{matrix}
\frac{sinA}{sinC}=1\\
\frac{sinB}{sinC}=1
\end{matrix}\right.$

$\Leftrightarrow \left\{\begin{matrix}
A=90^o\\
B=C
\end{matrix}\right.$ v $A=B=C$


$LOVE (x) \bigg |_{x=e}^{\Omega} =+\infty$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Forgive Yourself 
Quân Sư (17-03-2015)
  #19  
Cũ 17-03-2015, 21:19
Avatar của Quân Sư
Quân Sư Quân Sư đang ẩn
Quản Lý Diễn Đàn
Đến từ: Hà Tĩnh
Nghề nghiệp: Software Engineering
Sở thích: Lặng Lẽ
 
Cấp bậc: 33 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 81 / 811
Điểm: 515 / 10034
Kinh nghiệm: 44%

Thành viên thứ: 20436
 
Tham gia ngày: Feb 2014
Bài gửi: 1.547
Đã cảm ơn : 503
Được cảm ơn 1.246 lần trong 754 bài viết

Mặc định Re: [TOPIC] Các Bài Toán Trong Tam Giác

Bài 14: Nhận dạng tam giác $ABC$ biết:
$$\tan \frac{A}{4}. \tan \frac{B}{4}. \tan\frac{C}{4}=(7-4\sqrt{3})(2-\sqrt{3})$$



Nguyễn Minh Đức - ĐH FPT


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Quân Sư 
Forgive Yourself (18-03-2015)
  #20  
Cũ 17-03-2015, 21:21
Avatar của Forgive Yourself
Forgive Yourself Forgive Yourself đang ẩn
Thành viên Chính thức
Đến từ: Hà Tĩnh
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 164
Điểm: 25 / 1648
Kinh nghiệm: 59%

Thành viên thứ: 40132
 
Tham gia ngày: Dec 2014
Bài gửi: 75
Đã cảm ơn : 87
Được cảm ơn 28 lần trong 18 bài viết

Mặc định Re: [TOPIC] Các Bài Toán Trong Tam Giác

Bài 15: Xác định dạng của tam giác $ABC$ biết rằng:

$$(p-a)sin^2A+(p-b)sin^2B=csinAsinB$$


$LOVE (x) \bigg |_{x=e}^{\Omega} =+\infty$


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Có thể bạn quan tâm

LIÊN HỆ
Email:
p.kimchung@gmail.com

Tel: 0984.333.030

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Kỹ thuật ép biên trong bài toán tìm Giá trị lớn nhất, giá trị nhỏ nhất Phạm Kim Chung Tài liệu Bất đẳng thức 6 25-05-2016 18:14
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nhọn và nội tiếp đường tròn tâm I, các tiếp tuyến với đường tròn tại A và C cắt tiếp tuyến có tiếp điểm B tại các điểm tương ứng M(-4; Khanhduy Giải toán Hình giải tích phẳng Oxy 0 14-05-2016 00:00
Trong mặt phẳng với hệ độ Oxy cho tam giác ABC có C(-1,-2) ngoại tiếp đường tròn tâm I baolinhkl Hỏi và Giải đáp nhanh các bài Toán 3 11-05-2016 00:15
Bài toán hay: Cho tam giác ABC nội tiếp đường tròn tâm O, có hai đường cao BE và CF cắt nhau tại H(5;5). EF cắt BC tại P(8;0). M(9/2;7/2). Tìm tọa độ các đỉnh của tam giác ABC. (Liệu có thể chứng minh PH dobinh1111 Giải toán Hình giải tích phẳng Oxy 0 03-05-2016 12:44
Cho tam giác ABC ...Điểm M(-4;1) thuộc cạnh AC.Viết pt đường thẳng AB tn24121997 Giải toán Hình giải tích phẳng Oxy 5 05-04-2015 22:37



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
nhận dạng tam giác
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014