Giải bất phương trình sau : $\sqrt {1 + \mathop {\log }\nolimits_2 } x - \sqrt {1 - \mathop {\log }\nolimits_2 } x \ge \mathop {\log }\nolimits_2 x$

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số & Giải tích 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hàm số Mũ-Logarit


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 31-01-2013, 00:37
Avatar của hoangphilongpro
hoangphilongpro hoangphilongpro đang ẩn
Thành viên Chính thức
Đến từ: Thanh hóa
Nghề nghiệp: Học sinh
 
Cấp bậc: 14 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 331
Điểm: 77 / 5894
Kinh nghiệm: 26%

Thành viên thứ: 1151
 
Tham gia ngày: Nov 2012
Bài gửi: 233
Đã cảm ơn : 399
Được cảm ơn 57 lần trong 42 bài viết

Lượt xem bài này: 1921
Mặc định Giải bất phương trình sau : $\sqrt {1 + \mathop {\log }\nolimits_2 } x - \sqrt {1 - \mathop {\log }\nolimits_2 } x \ge \mathop {\log }\nolimits_2 x$

Giải bất phương trình sau : $\sqrt {1 + \mathop {\log }\nolimits_2 } x - \sqrt {1 - \mathop {\log }\nolimits_2 } x \ge \mathop {\log }\nolimits_2 x$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  hoangphilongpro 
Lưỡi Cưa (31-01-2013)
  #2  
Cũ 31-01-2013, 01:50
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 651
Điểm: 307 / 11255
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định

Nguyên văn bởi hoangphilongpro Xem bài viết
Giải bất phương trình sau : $\sqrt {1 + \mathop {\log }\nolimits_2 } x - \sqrt {1 - \mathop {\log }\nolimits_2 } x \ge \mathop {\log }\nolimits_2 x$
$ĐK: \begin{cases}1+log_2x\geq 0\\1-log_2x\geq 0\end{cases}$

$BPT\Leftrightarrow 2log_2x\geq log_2x\left(\sqrt{1+log_2x}+\sqrt{1-log_2x} \right)$ $\Leftrightarrow log_2x\left(\sqrt{1+log_2x}+\sqrt{1-log_2x}-2 \right)\leq 0$

Ta có:$\left(\sqrt{1+log_2x}+\sqrt{1-log_2x} \right)^2\leq 2\left[(\sqrt{1+log_2x})^2+(\sqrt{1-log_2x})^2 \right]=4$

$\Rightarrow \sqrt{1+log_2x}+\sqrt{1-log_2x}\leq 2$ $\Rightarrow \sqrt{1+log_2x}+\sqrt{1-log_2x}-2 \leq 0$

$\Rightarrow BPT\Leftrightarrow \begin{cases}log_2x\geq0\\1+log_2x\geq 0\\1-log_2x\geq 0\end{cases}$ $\Leftrightarrow 0\leq log_2x\leq 1\Leftrightarrow1\leq x\leq 2$


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Mai Tuấn Long 
hoangphilongpro (31-01-2013)
  #3  
Cũ 31-01-2013, 13:04
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 16051
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.191 lần trong 1.384 bài viết

Mặc định

Nguyên văn bởi Mai Tuấn Long Xem bài viết
$\Rightarrow BPT\Leftrightarrow \begin{cases}log_2x\geq0\\1+log_2x\geq 0\\1-log_2x\geq 0\end{cases}$ $\Leftrightarrow 0\leq log_2x\leq 1\Leftrightarrow1\leq x\leq 2$
Góp ý nhỏ:
Bài làm của thầy thiếu chặt chẽ phần trên, nếu chính xác hơn thì phải chia TH:
+ TH1: $\sqrt{1+\log_2x}+\sqrt{1-\log_2x}=2\iff \log_2x=0\iff x=1.$
+ TH2: $\begin{cases}\sqrt{1+\log_2x}+\sqrt{1-\log_2x}<2\\ \log_2x\ge 0\end{cases}$

Chẳng hạn, giải BPT: \[\log_2\frac{1}{2x}(\sqrt{1+\log_2x}+\sqrt{1-\log_2x}-2)\le 0\]


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
dienhosp3 (03-02-2013), hoangphilongpro (19-02-2013)
  #4  
Cũ 01-02-2013, 08:18
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 651
Điểm: 307 / 11255
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định

Nguyên văn bởi Lê Đình Mẫn Xem bài viết
Góp ý nhỏ:
Bài làm của thầy thiếu chặt chẽ phần trên, nếu chính xác hơn thì phải chia TH:
+ TH1: $\sqrt{1+\log_2x}+\sqrt{1-\log_2x}=2\iff \log_2x=0\iff x=1.$
+ TH2: $\begin{cases}\sqrt{1+\log_2x}+\sqrt{1-\log_2x}<2\\ \log_2x\ge 0\end{cases}$

Chẳng hạn, giải BPT: \[\log_2\frac{1}{2x}(\sqrt{1+\log_2x}+\sqrt{1-\log_2x}-2)\le 0\]
Thầy Mẫn xem lại gợi ý của thầy nhé !


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$sqrt, 1, bất, ge, giải, log, mathop, nolimits2, phương, sau, sqrt, trình, x$
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên