Cho $a,b,c>0$ thỏa mãn $(a+b-c)(a+c-b)(c+b-a)=1$. Chứng minh $\left(\frac{a+b+c}{5} \right )^5\ge \frac{a^2+b^2+c^2}{3}$

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 23-06-2014, 20:06
Avatar của phatthientai
phatthientai phatthientai đang ẩn
Thành viên Chính thức
Nghề nghiệp: Học sinh
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 658
Điểm: 315 / 10966
Kinh nghiệm: 35%

Thành viên thứ: 8227
 
Tham gia ngày: Apr 2013
Bài gửi: 946
Đã cảm ơn : 108
Được cảm ơn 265 lần trong 190 bài viết

Lượt xem bài này: 416
Mặc định Cho $a,b,c>0$ thỏa mãn $(a+b-c)(a+c-b)(c+b-a)=1$. Chứng minh $\left(\frac{a+b+c}{5} \right )^5\ge \frac{a^2+b^2+c^2}{3}$

Cho $a,b,c>0$ thỏa mãn $(a+b-c)(a+c-b)(c+b-a)=1$. Chứng minh $$\left(\frac{a+b+c}{5} \right )^5\ge \frac{a^2+b^2+c^2}{3}$$


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 23-06-2014, 22:34
Avatar của Quân Sư
Quân Sư Quân Sư đang ẩn
Quản Lý Diễn Đàn
Đến từ: Hà Tĩnh
Nghề nghiệp: Software Engineering
Sở thích: IT
 
Cấp bậc: 33 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 81 / 811
Điểm: 515 / 11393
Kinh nghiệm: 44%

Thành viên thứ: 20436
 
Tham gia ngày: Feb 2014
Bài gửi: 1.547
Đã cảm ơn : 503
Được cảm ơn 1.247 lần trong 754 bài viết

Mặc định Re: Cho $a,b,c>0$ thỏa mãn $(a+b-c)(a+c-b)(c+b-a)=1$. Chứng minh $\left(\frac{a+b+c}{5} \right )^5\ge \frac{a^2+b^2+c^2}{3}$

Nguyên văn bởi phatthientai Xem bài viết
Cho $a,b,c>0$ thỏa mãn $(a+b-c)(a+c-b)(c+b-a)=1$. Chứng minh $$\left(\frac{a+b+c}{5} \right )^5\ge \frac{a^2+b^2+c^2}{3}$$
Có lỗi về đề rồi!Với $a=b=c=1$.BĐT sai!


Nguyễn Minh Đức - ĐH FPT


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 24-06-2014, 12:46
Avatar của Neverland
Neverland Neverland đang ẩn
RunAway-Dsfaster =D
Đến từ: Nghệ An
Nghề nghiệp: Living in my life
Sở thích: My Life
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 443
Điểm: 135 / 6323
Kinh nghiệm: 72%

Thành viên thứ: 19217
 
Tham gia ngày: Jan 2014
Bài gửi: 405
Đã cảm ơn : 180
Được cảm ơn 207 lần trong 132 bài viết

Mặc định Re: Cho $a,b,c>0$ thỏa mãn $(a+b-c)(a+c-b)(c+b-a)=1$. Chứng minh $\left(\frac{a+b+c}{5} \right )^5\ge \frac{a^2+b^2+c^2}{3}$

Nguyên văn bởi phatthientai Xem bài viết
Cho $a,b,c>0$ thỏa mãn $(a+b-c)(a+c-b)(c+b-a)=1$. Chứng minh $$\left(\frac{a+b+c}{5} \right )^5\ge \frac{a^2+b^2+c^2}{3}$$
Đoạn màu đỏ chắc là số 3:
Nếu thế thì lời giải như sau:
$(a+b-c)(b+c-a)(c+a-b)\leq abc\Rightarrow abc\geq 1$
$\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{3}\leq \frac{(a^{2}+b^{2}+c^{2})a^{2}b^{2}c^{2}}{3}\leq \frac{(a^{2}+b^{2}+c^{2})(ab+bc+ca)^{3}}{81}\leq \frac{\frac{((a^{2}+b^{2}+c^{2})+2(ab+bc+ca))^{3}} {27}(ab+bc+ca)}{81}\leq \frac{\frac{((a^{2}+b^{2}+c^{2})+2(ab+bc+ca))^{3}} {27}\frac{1}{3}(a+b+c)^{2}}{81}=(\frac{a+b+c}{3})^ {5}$


Đã đến lúc phải từ bỏ lối chờ đợi những quà tặng bất ngờ của cuộc sống mà phải tự mình làm ra cuộc sống
-Lev Tolstoi-

Các bạn đang xem video trên www.K2pi.Net.Vn


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Neverland 
Quân Sư (24-06-2014)
  #4  
Cũ 24-06-2014, 19:29
Avatar của ---=--Sơn--=---
---=--Sơn--=--- ---=--Sơn--=--- đang ẩn
Frosty Sunshine
Đến từ: The Sun
Nghề nghiệp: Học sinh
Sở thích: Indefinitely
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 577
Điểm: 235 / 7925
Kinh nghiệm: 10%

Thành viên thứ: 23716
 
Tham gia ngày: Apr 2014
Bài gửi: 705
Đã cảm ơn : 450
Được cảm ơn 311 lần trong 241 bài viết

Mặc định Re: Cho $a,b,c>0$ thỏa mãn $(a+b-c)(a+c-b)(c+b-a)=1$. Chứng minh $\left(\frac{a+b+c}{5} \right )^5\ge \frac{a^2+b^2+c^2}{3}$

Nguyên văn bởi Runaway Xem bài viết
Đoạn màu đỏ chắc là số 3:
Nếu thế thì lời giải như sau:
$(a+b-c)(b+c-a)(c+a-b)\leq abc\Rightarrow abc\geq 1$
$\Rightarrow \frac{a^{2}+b^{2}+c^{2}}{3}\leq \frac{(a^{2}+b^{2}+c^{2})a^{2}b^{2}c^{2}}{3}\leq \frac{(a^{2}+b^{2}+c^{2})(ab+bc+ca)^{3}}{81}\leq \frac{\frac{((a^{2}+b^{2}+c^{2})+2(ab+bc+ca))^{3}} {27}(ab+bc+ca)}{81}$


$\leq \frac{\frac{((a^{2}+b^{2}+c^{2})+2(ab+bc+ca))^{3}} {27}\frac{1}{3}(a+b+c)^{2}}{81}=(\frac{a+b+c}{3})^ {5}$

.................


The Sun


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên