[Topic] Dành cho các bạn mới tiếp xúc với bất đẳng thức !

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị


 
Công cụ bài viết Kiểu hiển thị
  #1  
Cũ 06-12-2012, 22:17
Avatar của Phạm Kim Chung
Phạm Kim Chung Phạm Kim Chung đang ẩn
Sáng lập: K2pi -Toán THPT
Đến từ: Nghệ An
Nghề nghiệp: GV THPT
 
Cấp bậc: 34 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 83 / 839
Điểm: 560 / 18807
Kinh nghiệm: 56%

Thành viên thứ: 1
 
Tham gia ngày: Dec 2011
Bài gửi: 1.682

Lượt xem bài này: 10864
Mặc định [Topic] Dành cho các bạn mới tiếp xúc với bất đẳng thức !

Theo nguyện vọng một số bạn khi mới học bất đẳng thức, các bạn muốn có thêm nhiều bài tập đơn giản để vận dụng các BĐT đã học, như BĐT : AM-GM, Bunhia, Min-côp-xky,Côsi - Svacxơ ...

Chúng ta cùng lập topic này để ra đề và hỏi đáp những bất đẳng thức đơn giản, những kỹ thuật đơn giản..

Mong các thầy, các bạn có những bài toán BĐT nào vừa tầm cùng post lên cho học sinh luyện tập !

Những em đã hỏi và muốn luyện tập thì phải cố gắng giải và post lời giải để được các thầy cô trên diễn đàn trợ giúp !

Bài 1. Cho các số thực dương $x,y$ thỏa mãn : $ x^3+2y^3=1$. Tìm giá trị nhỏ nhất của biểu thức : $ P=x^4+y^4 $


Never study to be successful, study for self efficiency. Don’t run behind success. Follow behind excellence, success will come all way behind you.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 07-12-2012, 17:25
Avatar của Hiệp sỹ bóng đêm
Hiệp sỹ bóng đêm Hiệp sỹ bóng đêm đang ẩn
Học
Nghề nghiệp: hoc sinh
Sở thích: nghe nhạc
 
Cấp bậc: 28 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 683
Điểm: 343 / 13736
Kinh nghiệm: 34%

Thành viên thứ: 809
 
Tham gia ngày: Oct 2012
Bài gửi: 1.030

Mặc định

Ta có:
$x^{4}+x^{4}+x^{4}+(\frac{1}{\sqrt[3]{17}})^{4}\geq \frac{4}{\sqrt[3]{17}}x^{3}$
$y^{4}+y^{4}+y^{4}+(\frac{2}{\sqrt[3]{17}})^{4}\geq \frac{8}{\sqrt[3]{17}}y^{3}$
$\Rightarrow 3(x^{4}+y^{4})+\frac{1}{\sqrt[3]{17}}\geq \frac{4}{\sqrt[3]{17}}(x^{3}+2y^{3})$
$\Rightarrow 3(x^{4}+y^{4})\geq \frac{3}{\sqrt[3]{17}}$
$\rightarrow x^{4}+y^{4}\geq \frac{1}{\sqrt[3]{17}}$
Dấu '=' xảy ra $\Leftrightarrow \begin{cases}
x=\dfrac{1}{\sqrt[3]{17}}& \text{ } \\
y=\dfrac{2}{\sqrt[3]{17}}& \text{ }
\end{cases}$



Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 07-12-2012, 17:36
Avatar của Nôbita
Nôbita Nôbita đang ẩn
Quản Lý Diễn Đàn
Đến từ: Hồ Chí Minh
Nghề nghiệp: Tập sự
Sở thích: Toán học
 
Cấp bậc: 12 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 281
Điểm: 58 / 5534
Kinh nghiệm: 24%

Thành viên thứ: 1430
 
Tham gia ngày: Nov 2012
Bài gửi: 174

Mặc định

Thêm một bài vừa tầm nữa.
Bài 2. Cho $a,b>0$. Chứng minh rằng $$\dfrac{a^2}{b}+\dfrac{b^2}{a}+a+b\ge 2\sqrt{2(a^2+b^2)}$$


"Hãy lấp lánh ngày hôm nay và ngày mai bạn sẽ tỏa sáng."


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 07-12-2012, 18:04
Avatar của Phạm Kim Chung
Phạm Kim Chung Phạm Kim Chung đang ẩn
Sáng lập: K2pi -Toán THPT
Đến từ: Nghệ An
Nghề nghiệp: GV THPT
 
Cấp bậc: 34 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 83 / 839
Điểm: 560 / 18807
Kinh nghiệm: 56%

Thành viên thứ: 1
 
Tham gia ngày: Dec 2011
Bài gửi: 1.682

Mặc định

Bài toán tìm GTLN, GTNN yêu cầu các bạn phải kết luận Giá trị cực trị bằng bao nhiêu và đạt được khi nào ? ( Xem định nghĩa )
Bài 3 Cho các số thực dương $x,y$ thỏa mãn điều kiện $2x+3y=1$. Tìm giá trị nhỏ nhất của biểu thức :
$$P=252x+28y+\frac{1}{x^2}+\frac{1}{y} $$


Never study to be successful, study for self efficiency. Don’t run behind success. Follow behind excellence, success will come all way behind you.


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Từ khóa
đẳng, bạn, bất, bất đẳng thức cho người mới học, bất đẳng thức dành cho người mới học, dành, mới, thức, tiếp, topic, với
Công cụ bài viết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên