Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán - Xem bài viết riêng lẻ - Chứng minh $P=x^2y+y^2z+z^2x < \frac{4}{27}$
Xem bài viết riêng lẻ
  #2  
Cũ 23-07-2013, 11:10
Avatar của N H Tu prince
N H Tu prince N H Tu prince đang ẩn
Quản Lý Chuyên Mục
Đến từ: Di Linh
Nghề nghiệp: Ăn bám
 
Cấp bậc: 17 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 411
Điểm: 116 / 6492
Kinh nghiệm: 46%

Thành viên thứ: 7368
 
Tham gia ngày: Mar 2013
Bài gửi: 350
Đã cảm ơn : 1.066
Được cảm ơn 563 lần trong 258 bài viết

Mặc định

Nguyên văn bởi anhhtn Xem bài viết
Cho $P=x^2y+y^2z+z^2x$ và $x+y+z=1; x,y,z >0$. Chứng minh $P<\frac{4}{27}$
Giả sử $x\ge y\ge z$
$=>(y-x)(y-z)\le 0=>y^2+xz\le xy+yz=>y^2z+xz^2\le xyz+yz^2$
$=>P\le x^2y+xyz+yz^2=y(x^2+xz+z^2)\le y(x+z)^2=4.y\frac{(x+z)^2}{4}\le 4.\frac{2(x+y+z)}{54}=\frac{4}{27}$
Đẳng thức xảy ra khi $(x,y,z)=(\frac{2}{3};\frac{1}{3};0)$
Nguồn:VMF


Dẫu biết rằng đường đời nhiều sỏi đá

Chỉ mong rằng vấp ngã vẫn còn răng


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  N H Tu prince 
Nguyễn Duy Hồng (23-07-2013)