TOÁN TRUNG HỌC PHỔ THÔNG - Xem bài viết riêng lẻ - Tìm giá trị nhỏ nhất của biểu thức $$P=a\left[\left(a^2+3\right)\dfrac{a+b}{c}+24\right]+b\left[\left(b^2+3\right)\dfrac{b+c}{a}+24\right]+c\left[\left(c^2+3\right)\dfrac{c+a}{b}+24\right]$$
Xem bài viết riêng lẻ
  #1  
Cũ 04-05-2016, 21:14
Avatar của Trần Quốc Việt
Trần Quốc Việt Trần Quốc Việt đang ẩn
Điều Hành Diễn Đàn
Đến từ: Nạn Đói 45
 
Cấp bậc: 40 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 195 / 978
Điểm: 827 / 11767
Kinh nghiệm: 13%

Thành viên thứ: 29146
 
Tham gia ngày: Nov 2014
Bài gửi: 2.483
Đã cảm ơn : 489
Được cảm ơn 2.375 lần trong 1.096 bài viết

Lượt xem bài này: 760
Mặc định Tìm giá trị nhỏ nhất của biểu thức $$P=a\left[\left(a^2+3\right)\dfrac{a+b}{c}+24\right]+b\left[\left(b^2+3\right)\dfrac{b+c}{a}+24\right]+c\left[\left(c^2+3\right)\dfrac{c+a}{b}+24\right]$$

Cho $a,b,c$ là độ dài ba cạnh của một tam giác thỏa mãn $ab+bc+ca=3$. Tìm giá trị nhỏ nhất của biểu thức $$P=a\left[\left(a^2+3\right)\dfrac{a+b}{c}+24\right]+b\left[\left(b^2+3\right)\dfrac{b+c}{a}+24\right]+c\left[\left(c^2+3\right)\dfrac{c+a}{b}+24\right]$$


Trần Quốc Việt


Báo cáo bài viết xấu Trả lời với trích dẫn